Purlear Creek - Phase I Stream Restoration Annual Monitoring Report

Monitoring Year: 2008 Measurement Year: 4 As-built Date: 2004

NCEEP Project Number: 294

Submitted to: NCDENR-Ecosystem Enhancement Program 1619 Mail Service Center Raleigh, NC 27699-1619

> Draft Submitted: November 2008 Final Submitted: May 2009

PURLEAR CREEK - PHASE I STREAM RESTORATION 2008 MONITORING REPORT

CONDUCTED FOR THE NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES

Table of Contents

l.	Executive Si	ummary / Project Abstract	Page 1
II.	Project Back	rground	Page 1
	1. Stru	cture and Objectives	Page 2
	2. Proj	ect Activity and Reporting History	Page 3
	3. Proj	ect Contacts	Page 4
	4. Proj	ect Location	Page 6
	5. Mor	nitoring Plan View	Page 7
III.	Project Cond	dition and Monitoring Results	Page 9
	A. Vegetati	on Assessment	Page 9
	B. Stream A	Assessment	Page 9
	1.	Hydrologic Assessment	Page 9
	2.	Project Problem Areas	Page 10
	3.	Stream Visual Assessment	Page 10
	4.	Quantitative Measures	Page 13
IV.	Methodolog	y Section	Page 22

TABLES

Table I.	Project Mitigation Structure and Objectives	Page 2
Table II.	Project Activity and Reporting History	Page 3
Table III.	Project Contact Table	Page 4
Table IV.	Project Background Table	Page 5
Table V.	Verification of Bankfull Events	Page 9
Table VI.	Project BEHI Conditions	NA
Table VII.	Categorical Stream Feature Visual Stability Assessment	Page 11
Table VIII.	Baseline Morphology and Hydraulic Summary	Page 14
Table IX.	Morphology and Hydraulic Monitoring Summary	Page 16

Appendix A Vegetation Raw Data

- 1. Vegetation Data Tables
- 2. Vegetation Problem Area Photos
- 3. Vegetation Monitoring Plot Photos

Appendix B Geomorphologic Raw Data

- 1. Current Conditions Plan View
- 2. Stream Problem Area Table
- 3. Stream Problem Area Photos/Project Photo Log
- 4. Visual Morphological Stability Assessment Tables
- 5. Cross section and Pebble Count Plots and Raw Data Tables
- 6. Longitudinal Plots
- 7. Feature Slope and Length Calculations
- 8. Channel Pattern Measurements

I. <u>Executive Summary/Project Abstract</u>

This report represents monitoring year 4 for the Purlear Creek Phase I stream restoration project in Wilkes County, North Carolina. The project is comprised of six reaches (Reach 1-6).

The channel has remained stable since construction. Study reaches show no significant bed profile or channel pattern changes, with the exception of aggradation in Reach 2 as illustrated in the permanent cross sections and profile. Permanent channel cross sections remain stable throughout the study reaches. Depositional point bars formed on many of the pool cross sections during previous monitoring periods and an inner berm feature formed on the riffle cross section in Reach 4 in 2006. Sediment load from upstream sources is the likely cause. The majority of channel banks are well-covered with vegetation. Planted trees and shrubs are doing well throughout the buffer.

The primary area of concern from previous monitoring years is the grade drops at several of the cross vanes on the project. The majority of these vanes are no longer considered problem areas as dense vegetation has established along the vane arms, reducing the risk of piping or undermining. No action is recommended at this time but these structures should be monitored closely in upcoming monitoring events. Other concern areas from previous reports are primarily small erosional areas that appear to have stabilized due to vegetation. Trampling, manure, and grazing effects from individual cattle were sporadically in evidence throughout the upper half of the project. This should be addressed to prevent future buffer vegetation grazing, streambank erosion, and water quality concerns.

Vegetation is generally successful at Purlear Phase I. In 2008, the lower reaches had greater herbaceous growth than the previous year due to higher rainfall. Total stems are higher in 2008 than 2007 as 26 new trees were added to the database. Many of these trees were missed in previous years because of thick ground cover. Mortality in 2008 was found to be a low 1.5%. Surviving planted stem density was estimated at 1086 stems per acre. Mortality is expected to be higher next year if cattle are continually allowed to graze inside the vegetative buffer.

II. Project Background

Project background information can be obtained from the as-built monitoring report prepared by Kimley-Horn and Associates dated 2004.

Table I lists project structure and objectives while Table II lists project activity and reporting history. The project contact table is listed in Table III and Table IV lists the background information for the project. Figure 1 shows a map with detailed directions to the project site.

	Table I. Pr	oject Mitigati	ion Structure a	and Objectives	S
	Pu	rlear Creek P	hase I / Projec	t # 294	
			Linear		
Project Segment or Reach	Mitigation		Footage or	Monitoring	
ID	Type	Approach	Acreage	Stationing*	Comment
					From Channel start to
Reach 1 - Upper Main				-0+50 to	confluence with Upper Middle
Reach	R	P1	2,260 lf	10+00	Tributary
Reach 2 - Upper Middle				0+00 to	
Tributary	R	P1	1,340 lf	2+60	
					From confluence with Upper
					Middle Tributary to
Reach 3 - Middle Main				0+00 to	confluence with Lower Middle
Reach	R	P1	2,850 lf	7+00	Tributary
					From start of Lower Middle
Reach 4 – Lower Middle				0+00 to	Tributary to first culvert
Tributary (upper reach)	R	P1	700 lf	6+50	crossing
					From first culvert crossing
					below Lower Middle Tributary
Reach 5 - Lower Middle				0+00 to	to confluence with Middle
Tributary (lower reach)	R	P1	2,750 lf	7+00	Main Reach
					From confluence with Lower
Reach 6 - Lower Main				0+00 to	Middle Tributary to end of
Reach	R	P1	1,600 lf	9+00	Phase I
Total Project			11,500 lf		

^{*} Only a portion of each reach was surveyed for monitoring

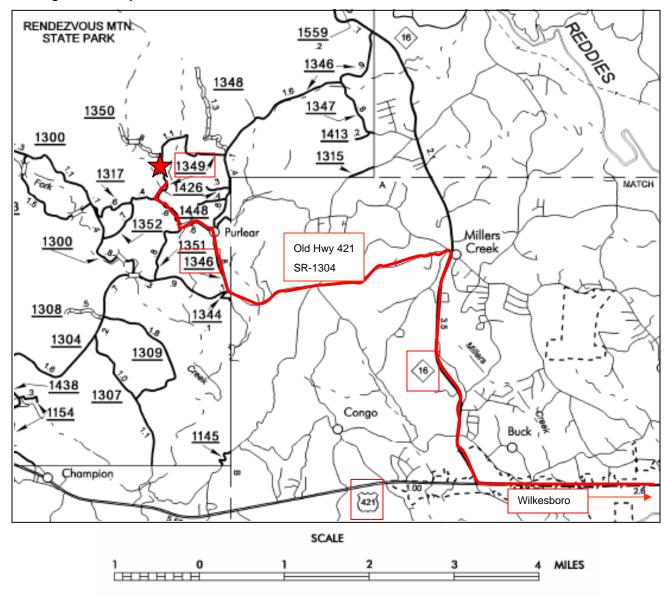
 $R = Restoration \qquad \qquad P1 = Priority \ I \\ EI = Enhancement \ I \qquad \qquad P2 = Priority \ II \\ EII = Enhancement \ II \qquad \qquad P3 = Priority \ III \\ \\$

S = Stabilization SS = Stream Bank stabilization

Table II. Project Activity and Reporting History Purlear Creek Phase I / Project # 294

Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery
Restoration Plan	Unknown	N/A*	October-02
Final Design - 90%	Unknown	N/A*	N/A*
Construction	Unknown	N/A*	November-03
Temporary S&E mix applied to entire project area	Unknown	N/A*	November-03
Permanent seed mix applied to reach	Unknown	N/A*	November-03
Containerized and B&B plantings	Unknown	N/A*	N/A*
Mitigation Plan / As-built (Year 0 Monitoring – baseline)	January-04	January-04	March-04
Structural maintenance (Bank repair and revegetation)	N/A*	March-05	March-05
Initial – Year 1 monitoring	January-05	January-05	March-05
Year 2 Monitoring	August-06	August-06	December-06
Year 3 Monitoring	August-07	August-07	December-07
Year 4 Monitoring	August-08	October-08	December-08
Year 5 Monitoring	August-09		
Year 5+ Monitoring			

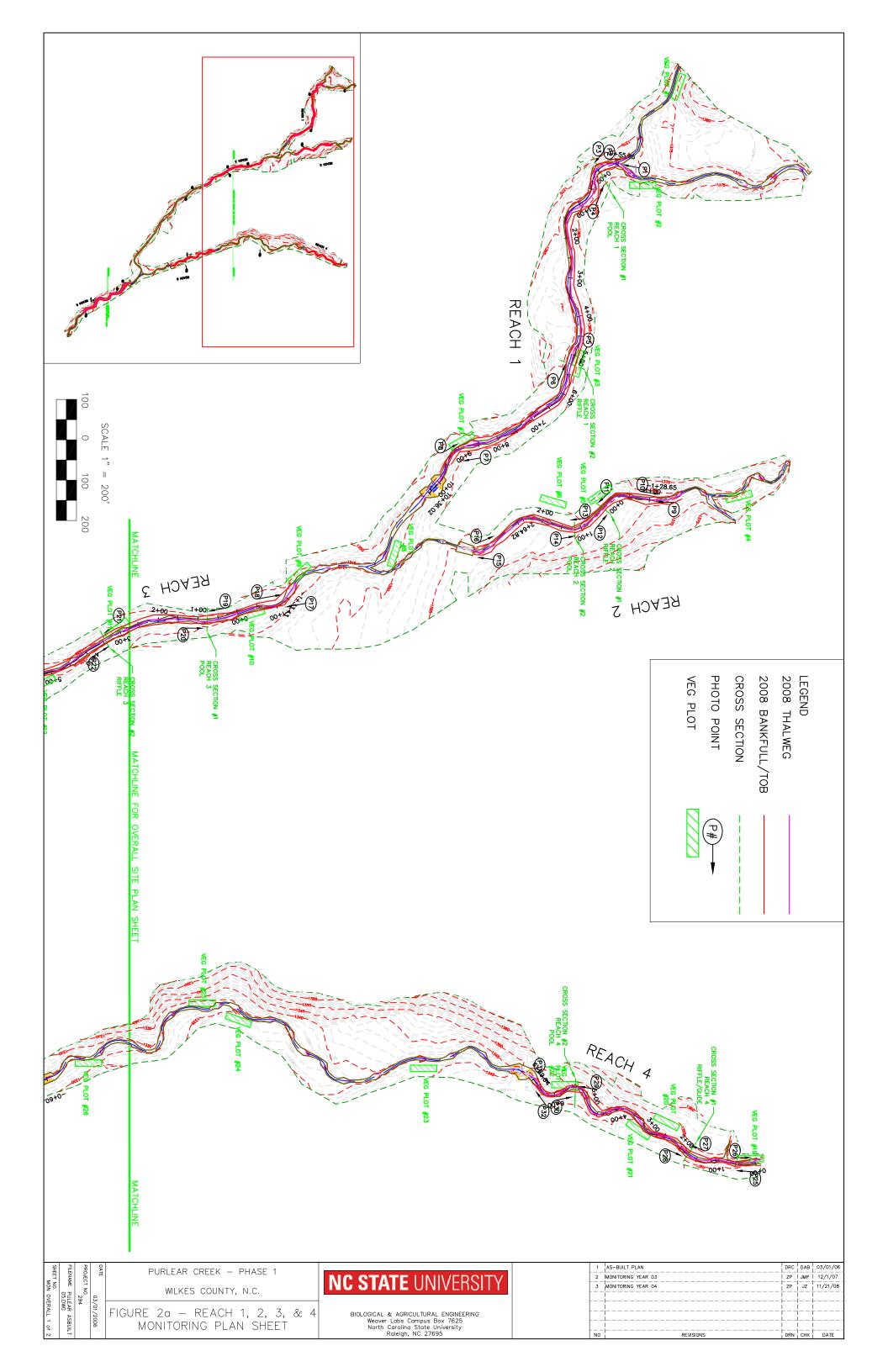
^{*} Historical project documents necessary to provide these data were unavailable at the time of report submission

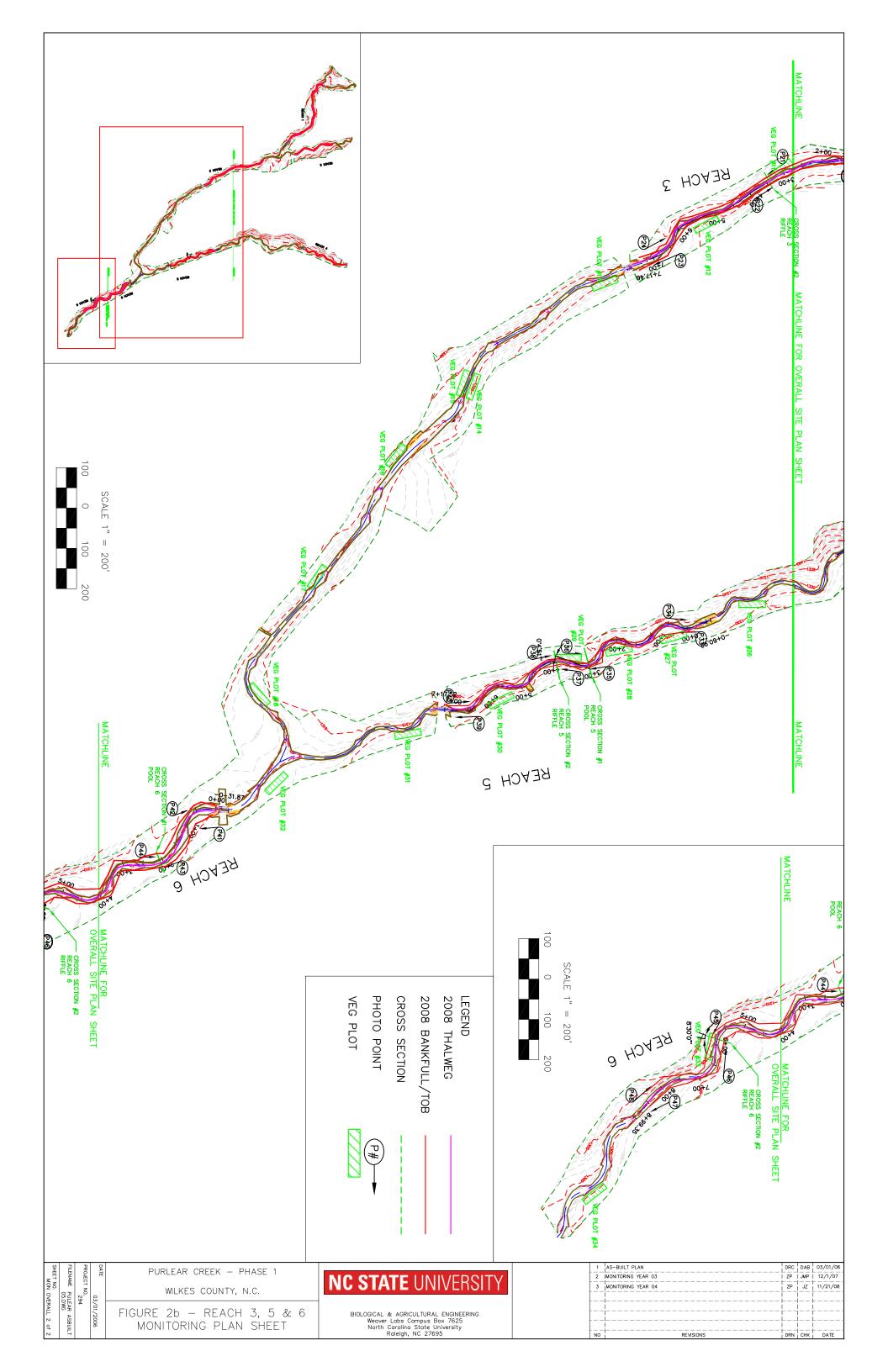

Table III. Project (Contact Table
Purlear Creek Phase	I / Project # 294
Designer	Kimley-Horn and Associates
	3001 Weston Parkway
	Cary, NC 27513
	(919)-677-2000
Primary project design POC	Will Wilhelm, PE
Construction Contractor	L-J Inc.
Planting Contractor	N/A*
Planting contractor POC	
Seeding Contractor	N/A*
Planting contractor point of contact	
Seeding Contractor Planting contractor point of contact	N/A*
Nursery Stock Suppliers	N/A*
Monitoring Performers	Biological & Agricultural Engineering
	North Carolina State University
	Campus Box 7625 Raleigh, NC 27695
Stream Monitoring POC	Zan Price (828) 712-9194
Vegetation Monitoring POC	Zan Price (828) 712-9194

^{*}Historical project documents necessary to provide these data were unavailable at the time of report submission.

1.3 - 2.6 mi² (Main Reach) 0.1 - 0.8mi² (Tributaries) Drainage impervious cover estimate (%) Stream Order 1.3 - 2.6 mi² (Main Reach) 0.1 - 0.8mi² (Tributaries) Estimated at <5% 1st and 2nd Order											
Purlear Creek Ph	ase I / Project # 294										
Project County	Wilkes										
Drainage Area	,										
Drainage impervious cover estimate (%)	Estimated at <5%										
Stream Order	1st and 2nd Order										
Physiographic Region	Piedmont										
Ecoregion	Northern Inner Piedmont (45e)										
Rosgen Classification of As-built	B and E-streamtypes										
Cowardin Classification	N/A*										
Dominant soil types	N/A*										
Reference site ID	Big Warrior and Basin Creek										
USGS HUC for Project and Reference	3040101										
NCDWQ Sub-basin for Project and Reference	03-07-01										
NCDWQ classification for Project and Reference	С										
Any portion of any project segment 303d listed?	No										
Any portion of any project segment upstream of a 303d listed segment?	No										
Reasons for 303d listing or stressor	N/A										
% of project easement fenced	100%										

^{*}Historical project documents necessary to provide these data were unavailable at the time of report submission.


Figure 1. Project Location



Directions from Hwy. 421 in Wilkesboro:

From Wilkesboro on Hwy. 421, turn right onto NC-16. Follow NC-16 for 3.5 miles to the Miller's Creek intersection. Turn left onto Old Hwy. 421 (SR-1304) and follow for 2.6 miles. Turn right onto Purlear Road (SR-1346) and follow for 0.8 miles. You will come to a stop sign at a church, turn left to stay on Purlear Road (also called New Hope Road). Follow Purlear Road for 0.6 miles until the intersection with Vannoy Maxwell Road. Project begins at this intersection and continues through the intersection with CC Hayes Road (SR-1349).

Contact the EEP Project Manager for access and landowner notification instructions. Access is not permitted to this site without prior approval.

III. Project Condition and Monitoring Results

A. <u>Vegetation Assessment</u>

Twenty-eight (28) vegetation monitoring plots were surveyed in the riparian buffer of the Purlear Phase I project. All the plots had been previously established and sampled in 2005, 2006, and 2007. Plot numbering is consistent with numbering from previous monitoring reports.

Vegetation is generally successful at Purlear Phase I. In 2008, the lower reaches had greater herbaceous growth than the previous year due to higher rainfall. Total stems are higher in 2008 than 2007 as 26 new trees were added to the database. Many of these trees were missed in previous years because of thick ground cover. Mortality in 2008 was found to be a low 1.5%. Surviving planted stem density was estimated at 1086 stems per acre. Mortality is expected to be higher next year if cattle are continually allowed to graze inside the vegetative buffer.

Vegetation data is presented in Appendix A of this report.

B. Stream Assessment

The stream channel is in a stable condition, with only localized problem areas identified in this survey.

Hydrologic Assessment

One bankfull event was recorded in 2008 as shown in Table V. Overall, four bankfull events have been recorded in two separate monitoring years.

	Table V. Verifi	cation of Bankfull Events	3
	Purlear Cree	k Phase I / Project # 294	
Date of Data Collection	Date of Occurrence	Method	Photo # (if available)
7/1/2006	6/26/2006	On-site transducer/data logger	
9/1/2006	8/30/2006	On-site transducer/data logger	
11/1/2006	10/21/2006	On-site transducer/data logger	
8/27/2008	8/27/2008	Proximal USGS Gage Resource*	

^{*}Bankfull event verified at two proximal USGS gage sites in Wilkes County (Reddies Rivers, North Wilkesboro and Elk Creek, Elkville, NC) using the rural Piedmont regional curve developed by NCSU (Harman et al 1999).

Bank Stability Assessment - Monitoring Year 05

Table VI. BEHI and Sediment Export Estimates shall be included in the monitoring year 5 report.

Project Problem Area

The problem area Table B1, plan sheet and photographs can be found in Appendix B. The table lists current problem areas for 2008.

Several problem areas identified in previous monitoring years have been stabilized with a dense stand of vegetation. These previous areas of concern include cross vane structures with large bed elevation drops (> 0.5 feet) and localized areas of bank erosion. These areas have been removed from Table B1 since they are no longer considered problem areas.

In addition to the problem areas noted in Table B1, there is evidence of cattle intrusion in the fenced buffer at the upper reaches of the project. This should be addressed to prevent future buffer vegetation grazing, streambank erosion, and water quality concerns.

Stream Visual Assessment

Table VII lists the results of a visual assessment conducted over each study reach. The data used to calculate the percentages listed in this table are found in Tables B2 in Appendix B. Reach 2 was dry during the 2008 survey making it difficult to identify riffle and pool features.

Table VII. Categ				-	Assessme	nt
	Purlear C	reek Phase Reaches	e I / Project	t # 294		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles	Intiai	1411-01	1111-02	1411-05	1/11-04	1411-05
Reach 1	100%	N/A	77%	85%	92%	
Reach 2	100%	N/A	60%	75%	N/A	
Reach 3	100%	N/A	100%	100%	100%	
Reach 4	100%	N/A	92%	83%	95%	
Reach 5	100%	N/A	100%	80%	80%	
Reach 6	100%	N/A	100%	100%	100%	
B. Pools						
Reach 1	100%	N/A	85%	92%	92%	
Reach 2	100%	N/A	91%	100%	N/A	
Reach 3	100%	N/A	91%	89%	100%	
Reach 4	100%	N/A	100%	83%	92%	
Reach 5	100%	N/A	100%	93%	93%	
Reach 6	100%	N/A	100%	100%	100%	
C. Thalweg						
Reach 1	100%	N/A	100%	100%	100%	
Reach 2	100%	N/A	100%	100%	100%	
Reach 3	100%	N/A	100%	100%	100%	
Reach 4	100%	N/A	100%	100%	100%	
Reach 5	100%	N/A	100%	100%	100%	
Reach 6	100%	N/A	100%	100%	100%	
D. Meanders						
Reach 1	100%	N/A	100%	100%	100%	
Reach 2	100%	N/A	89%	100%	100%	
Reach 3	100%	N/A	99%	99%	99%	
Reach 4	100%	N/A	100%	100%	100%	
Reach 5	100%	N/A	100%	100%	100%	
Reach 6	100%	N/A	82%	100%	100%	
E. Bed General						
Reach 1	100%	N/A	92%	100%	100%	
Reach 2	100%	N/A	89%	89%	55%	
Reach 3	100%	N/A	95%	95%	100%	
Reach 4	100%	N/A	71%	100%	100%	
Reach 5	100%	N/A	84%	100%	100%	
Reach 6	100%	N/A	83%	100%	100%	
F. Bank						
Reach 1	100%	N/A	92%	100%	100%	
Reach 2	100%	N/A	89%	100%	100%	
Reach 3	100%	N/A	95%	100%	100%	
Reach 4	100%	N/A	71%	100%	100%	
Reach 5	100%	N/A	84%	100%	100%	
Reach 6	100%	N/A	83%	100%	100%	
G. Vanes / J Hooks etc.	10007	37/4	0007	5507	7.50/	-
Reach 1	100%	N/A	80%	55%	55%	1
Reach 2	100%	N/A	70%	70%	70%	-
Reach 3	100%	N/A	87%	87%	87%	1
Reach 4	100%	N/A	94%	94%	94%	
Reach 5	100%	N/A N/A	100%	95%	95%	1
Reach 6	100%	IN/A	85%	75%	75%	1
H. Wads and Boulders	NT/A	NT/A	NT/A	NT/A	NT/A	1
Reach 1	N/A	N/A	N/A	N/A	N/A	1
Reach 2	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	1
Reach 3					+	1
Reach 4 Reach 5	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	1
Reach 6	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	+

Reach 1 – Upper Main Reach

The channel profile is similar to the as-built survey condition, with bedform features maintaining their locations and depths. This reach includes 8 cross vane grade controls with downstream elevation drops of greater than 0.5 ft. Three of these were located within the monitored reach, and four were located upstream. Three vanes remain a problem area in the current monitoring period due to the large elevation difference through the vane and some piping around the vane. Dense vegetation has established around all of the vanes minimizing the risk of failure.

Channel cross sections showed no significant changes in riffle cross sectional area but a large decrease in pool area was observed in the 2006 through 2008 surveys compared to the as built condition. A depositional bar formed between the 2005 and 2006 monitoring events. The pool cross section has stayed consistent since 2006 and appears stable. The riffle cross section dimensions remain consistent with as-built conditions.

A visual assessment of this reach showed a total decrease in number of riffles compared to the as built condition, but those that remain appear stable. Meanders are maintaining location and stability throughout the reach.

Reach 2 - Upper Middle Tributary

Reach 2 was dry during the 2008 survey making it difficult to observe riffle and pool features. Some aggradation has occurred along the channel profile compared to the as built condition. This is illustrated in the profile and channel cross sections included in the appendix. The cause of the aggradation is likely from excess sediment from an upstream source. Dense vegetation is doing an excellent job of inducing aggradation along the channel banks. There are no signs of erosion on the streambanks.

This reach includes seven cross vane grade controls with downstream elevation drops of greater than 0.5 ft. Of the seven, only one remains a concern for future stability. The remaining six have become embedded with dense vegetation around the vane arms. This vegetation has greatly reduced the risk of the vanes failing in the future.

Reach 3 – Middle Main Reach

The channel profile is similar to the as-built survey condition, with bedform features maintaining their locations and depths. This reach includes six cross vane grade controls with downstream elevation drops of greater than 0.5 ft. Three of these were removed from concern since dense vegetation is establishing along the vane arm, reducing the risk of piping or undermining. The three remaining structures continue to be at risk, but have not changed condition over the past year.

Channel cross sections are stable and remain similar to as-built conditions. The pool cross section filled in slightly in 2006. Since then, the pool area has remained consistent. Channel banks on both cross sections remain well vegetated and stable.

Minimal aggradation or degradation has occurred in the channel, indicating the channel appears to be transporting the sediment load delivered to it by its watershed.

Channel pattern is similar to as-built conditions. Since the channel in this area is mostly straight, no pattern measurements were conducted. Dense vegetation is establishing along the channel banks. This vegetation is providing an excellent root mass to stabilize the banks.

Reach 4 – Lower Middle Tributary (Upper Section)

The channel profile is similar to the as-built survey condition, with bedform features maintaining their locations and depths. This reach includes four cross vane grade controls with downstream elevation drops of greater than 0.5 ft. However, all of the vanes appear stable due to the dense vegetation surrounding the vane arms. The vegetation has reduced the risk of piping or undercutting.

Channel cross sections are stable and remain similar to as-built conditions. A small decrease in area has occurred in both sections and is likely the result of a large sediment load entering the project from channel instability above this project. An inner berm feature was created in the riffle cross section in 2006 narrowing the lower portion of the channel, which should help with sediment transport. A depositional point bar formed on the pool cross section in 2006. The pool cross section has stayed consistent since 2006 and appears stable. Channel banks are well vegetated and appear stable.

Area 5 - Lower Middle Tributary (Lower Section)

The channel profile is similar to the as-built survey condition, with bedform features maintaining their locations and depths. This reach includes five cross vane grade controls with downstream elevation drops of greater than 0.5 ft. All of these vanes appear stable due to the dense vegetation surrounding the vane arms. The vegetation has reduced the risk of piping or undercutting.

Channel cross sections are very stable and remain similar to as-built conditions. Vegetation has become well established within the active channel and is adding to the sediment deposition along the channel banks. Channel banks are well vegetated and appear stable. There are no areas of visible meander migrations throughout this reach. No erosion areas were observed along this reach.

Reach 6 - Lower Main Reach

The channel profile is similar to the as-built survey condition, with bedform features maintaining their locations and depths. This reach includes five cross vane grade controls with downstream elevation drops of greater than 0.5 ft. Four of the vanes are within the study reach and one is located upstream. All of these vanes appear to have stabilized with dense vegetation and are not currently a concern.

A depositional point bar formed in the riffle cross section in 2005. Since then the cross section has remained consistent. The right bank is armored with a dense stand of willows and remains stable. A depositional point bar formed in the pool cross section in 2005 as well. Dense herbaceous cover and willow have established along the banks and the cross section appears stable.

Channel pattern is similar to as-built conditions. Dense vegetation is establishing along the channel banks in most areas. This vegetation is providing an excellent root mass to stabilize the banks.

Two drain tiles that were installed in fall 2005 are still draining water through the buffer and adjacent field.

Quantitative Measures Summary Tables

The tables below present all of the quantitative summary data from the survey cross-sectional surveys, longitudinal surveys, and pebble counts. The associated raw data and plots are located in Appendix B of this report.

Table VIIIa. Baseline Morphology and Hydraulic Summary Purlear Creek Phase I / Project # 294 - Main Stem

Mile Mark Med Mile Max Med Mil						iear Ci	eek Pna	ase I / Pi	roject # 294	+ - Main	Stem								
Min Min	Parameter	USGS Gage Data	Reg	_			Pre	-Existing						Project Reference Stream					
Model Medical Min Max Med					-					Proposed	Proposed	Propsed	Proposed						
Dimension Min Max Med Min Max Med Min Max Max Med Med																			
BE Width (II) SIGSS gase data is 22 44 8 62 37 172 176 18 25 125 157 307 33 18 17 190 70 18 18 10 18 18 18 17 18 18 18 18					_	$(2A2)^{1}$	(2A)1	(2)1	$(1A)^{1}$				/	1			Creek		
Posterior Welfrich			Min	Max	Med												Med		
BF Cross Sectional Area (fiz.)				ļ		22	14.8	16.2	37								33.2		
Bit Mean Depth (ii)						10.6	15.6	17.0	22.1								329		
Bit Max Daysh (II)		project		-													68.4		
Midfill Depth Ratio		9		1								- 10		0.6			2.1 3.1		
Entrocebment Ratio		1												20.9			15.8		
Wested Parimeters		1												0.0			9.9		
Hydraulis radius (ft)				1		1.4	2.2	4.3	2.2	1.0	1.0	1./	2.0	1.4	1.9	2.0	9.9		
Pattern																			
Channel Relivatifit (ft)																			
Radius of Curvature (ft)						N/A	N/A	N/A	N/A	29.2	29.9	30.6	67.5	21	N/A	105	64.7		
Mender Wavelenach (ft)																103	51.2		
Meander Width ratio		i i i		t												i	350		
Frofile		j 		1												Ì	1.9		
Riffle length (ff)						1.//11	11/11	11/11	1,111		*./	*./		**/	1,7/11		•		
Riffle slope (fifth																			
Pool pacing (ft)										1			1	0.03	N/A	0.051	0.021		
Dots										1			1				****		
Additional Reach Parameters						106	124	N/A	43	108	111	113	205	100	N/A	224	305		
Additional Reach Parameters																			
Additional Reach Parameters																			
Vallex Length (ft) Channel Length (ft)																			
Vallex Length (ft) Channel Length (ft)																			
Channel Length (ft)	Additional Reach Parameters																		
Valley Slope (ft)	Valley Length (ft)																		
Simuosity 1 1 1 1 1 1 1 1 1	Channel Length (ft)																		
Water Surface Slone (IUft)	Valley Slope (ft)					0.022	0.016	0.015	0.01	0.013	0.013	0.011	0.01	0.017	N/A	0.014	N/A		
Respect Classification F3 ncised C4 (Incised) → B3c B4c B4c C4c B4c B4c C4c C4c C4c B4c C4c C4c C4c C4c B4c C4c C						1	1	1.1	1	1.2	1.2	1.2	1.2	1.06	N/A	1.4	N/A		
Rosen Classification F3 ncised C4 (Incised B3c B4c B4c C4c B4c B C4 C4c Number of Bankfull Events Steet of Bf Roodplain (acres) Steet of Roodplain (acres) S																			
Number of Bankfull Events																			
Extent of BF floodplain (acres)						F3	Incised)-	C4	I(Incised)→	B3c	B4c	B4c	C4c	B4c	В	C4	C4		
Drainage Area (sq mile)																			
Max d(riff) / d(bkf) ratio 2.6 1.4 1.5 2.4 1.5 1.5 1.4 1.4 1.7 1.3 1.3 1.3 1.5																			
Low Bank Height to max Dbkf ratio 1.8 2.2 1.5 1.8 1 1 1 1 2.8 N/A N/A 1																	7.2		
Avg Stream Slope										1.5	1.5	1.4	1.4				1.5		
Riffle Slope 0.028 0.03 0.01 0.01 0.03 0.02 0.01 0.03 N/A 0.051 0.05 Ratio of Riffle Slope to Avg. Slope 1.273 1.875 1 1 1.8 1.8 1.8 1.5 1.8 N/A 3.6 1 Pool Slope 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.003 0.002 N/A 0.0055 0.05 Ratio of Pool Slope to Avg. Slope 0 0.1 0.7 0.2 0.1 0.1 0.1 0.4 0.1 N/A 0.06 0.0 Maximum Pool Depth 1.9 2.3 2.2 2.1 2.2 2.4 2.9 2.2 1.3 N/A 3.1 4 Ratio of Pool Depth to Avg. Depth 3.8 2.1 2 2.3 2.2 2.2 2.2 2.2 2.2 2.2 N/A 1.6 2 Pool Width 21.4 13.6 30.6 20.2 17.2 17.6 18 35 12.5 N/A 40.6 50 Ratio of Pool Width to Bankfull Width 1 0.9 1.9 0.5 1 1 1.4 1 N/A 1.3 1 Ratio of Pool Area to Bankfull Area 2 1.6 2.1 0.8 1.1 1.1 1.1 1.4 1.1 N/A 1.1 1 Ratio of Pool to Pool Spacing 4.8 8.4 N/A 1.2 6.3 6.3 6.3 6.3 8.2 6.3 N/A 7.3 9 Ratio of Meander Length to Meander Bankfull N/A										1	1	1	1				1.2		
Ratio of Riffle Slope to Avg. Slope			-														0.014		
Pool Slope Depth									0.01								0.021 1.5		
Ratio of Pool Slope to Avg. Slope 0 0.1 0.7 0.2 0.1 0.1 0.1 0.4 0.1 N/A 0.6 0		 	1						0.002								0.002		
Maximum Pool Depth 1.9 2.3 2.2 2.1 2.2 2.4 2.9 2.2 1.3 N/A 3.1 4		1	1									0.00					0.002		
Ratio of Pool Depth to Avg. Depth 3.8 2.1 2 2.3 2.2 2.2 2.2 2.2 N/A 1.6 2		1	1														4.8		
Pool Width 21.4 13.6 30.6 20.2 17.2 17.6 18 35 12.5 N/A 40.6 50																	2.3		
Ratio of Pool Width to Bankfull Width 1 0.9 1.9 0.5 1 1 1 1.4 1 N/A 1.3 1			1														50.3		
Pool Area 21.2 24.4 36.9 26.9 20.9 22 25 40.6 8 N/A 64.4 10											1 / .0						1.5		
Ratio of Pool Area to Bankfull Area 2 1.6 2.1 0.8 1.1 1.1 1.1 1.1 1.4 1.1 N/A 1.1 1 1 Ratio of Pool to Pool Spacing 4.8 8.4 N/A 1.2 6.3 6.3 6.3 8.2 6.3 N/A 7.3 9 1 1 1 1 1 1 1 1 1		 									22			•			109.6		
Ratio of Pool to Pool Spacing																	1.6		
*BEHI																	9.2		
Bankfull Mean Velocity N/A N/A 5.3 4 4 5.3 4 5.3 4 4 5.3 4 5.3 4 5.3 4 5.3 4 5.3 4 5.3 4 5.3 4 5.3 4 5.3 4 5.3 4 5.3 4 9.4 1.2 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>1.0</td><td>0.1</td><td>11/11</td><td>1.2</td><td>0.5</td><td>0.5</td><td>0.5</td><td>0.2</td><td>0.5</td><td>11//11</td><td>7.5</td><td>7.2</td></th<>						1.0	0.1	11/11	1.2	0.5	0.5	0.5	0.2	0.5	11//11	7.5	7.2		
Bankfull Discharge, cfs N/A N/A 94.3 132.4 Ratio of Meander Length to Meander Bankfull N/A N/A N/A 10 10 10 11 8 N/A 11.4 10						N/A	N/A	5.3	4						İ	İ			
Ratio of Meander Length to Meander Bankfull N/A N/A N/A N/A 10 10 10 11 8 N/A 11.4 10										1						Ì			
										10	10	10	11	8	N/A	11.4	10.5		
Ratio of Radius of Curvature to Bankfull Width N/A N/A N/A N/A N/A 1.6 1.6 1.6 2.5 1.6 N/A 3.4 1 Note: Reaches 2A2, 2A, and 2 compare to As-built study reach 2. Reach 1A compares to As-built study reaches 1, 3, and 6.	Ratio of Radius of Curvature to Bankfull Width					N/A	N/A	N/A	N/A	1.6	1.6	1.6	2.5	1.6	N/A	3.4	1.5		

			Tal	ole VI	IIb. I	Baselii	ne Mor	phology	and Hy	ydraulic Sı	ummary							
			Pur	lear C	reek	Phase 1	/ Proje	ct # 294	- Tributaries									
Parameter	USG	S Gage l	Data	Reg	ional C	urve		Pre-Existi	ng		Design		Project Reference Stream					
											Proposed Reach	Proposed Reach	D 1	Upper Big	D 1 D .	D 1 D :		
				Mi	iddle M	ain	Tributary 2A1 2B 3		Reach (2A1)	(2B)	3	Reach Upstream 1	Warrior Creek	Reach Basin Creek 2	Reach Basin Creek			
Dimension	Min	Max	Med		Min Max Med		2.11	20		Med	Med	Med	Med	Med	Med	Med		
BF Width (ft)	USGS	gage da	ata is				5.1	8.9	10	8.9	6.5	15	12.5	15.7	30.7	33.2		
Floodprone Width (ft)	unava	ilable fo	r this				19	14	16	15.1	18.2	42	18	30	85	329		
BF Cross Sectional Area (ft2)		project					2.8	6.1	13.4	5.2	2.8	15.8	7.4	21.9	57.4	68.4		
BF Mean Depth (ft)							0.5	0.7	1.3	0.6	0.4	1	0.6	1.4	1.9	2.1		
BF Max Depth (ft) Width/Depth Ratio							1.1	1.2 12.7	7.7	0.8 17.6	0.6 17.6	1.5 15	20.8	1.8 11.2	2.5 16.2	3.1 15.8		
Entrenchment Ratio				-			3.7	1.6	1.6	17.6	2.8	2.8	1.4	11.2	2.8	9.9		
Wetted Perimeter(ft)							3.7	1.0	1.0	1./	2.0	2.0	1.4	1.9	2.0	9.9		
Hydraulic radius (ft)																		
Pattern																		
Channel Beltwidth (ft)								N/A		15.1	17.6	40.5	21	N/A	105	64.7		
Radius of Curvature (ft)								N/A		14.2	16.3	37.5	20.6	N/A	105.3	51.2		
Meander Wavelength (ft)								N/A		89	71.5	165	100	N/A	350	350		
Meander Width ratio								N/A		1.7	2.7	2.7	1.7	N/A	3.4	1.9		
Profile																		
Riffle length (ft)													0.03	N/A	0.051	0.021		
Riffle slope (ft/ft) Pool length (ft)													0.03	N/A	0.051	0.021		
Pool spacing (ft)							31	40	N/A	62	53	123	100	N/A	224	305		
Substrate Foot spacing (10)							31	40	IN/A	02	33	123	100	IN/A	224	303		
d50 (mm)																		
d84 (mm)																		
Additional Reach Parameters																		
Valley Length (ft)																		
Channel Length (ft)							0.018	0.023	0.014	0.015	0.007	0.012	0.017	N/A	0.014	NT/A		
Valley Slope (ft) Sinuosity							1.5	1.2	1.1	1.2	1.2	1.2	1.06	N/A N/A	0.014 1.4	N/A N/A		
Water Surface Slope (ft/ft)							1.3	1.2	1.1	1.2	1.2	1.2	1.00	IN/A	1.4	IV/A		
BF slope (ft/ft)																		
Rosgen Classification							E5b	B5c	G4	B4c	C4	C4	B4c	В	C4	C4		
Number of Bankfull Events																		
Extent of BF floodplain (acres)																		
Drainage Area (sq mile)							0.2	0.08	0.72	0.2	0.08	0.8	0.57	0.7	6.8	7.2		
Max d(riff) / d(bkf) ratio							2.2	1.7	1.5	1.4	1.5	1.5	1.7	1.3	1.3	1.5		
Low Bank Height to max Dbkf ratio Avg Stream Slope							1.1 0.012	2.6 0.019	2.4 0.013	0.018	0.008	1 0.014	2.8 0.016	N/A N/A	N/A 0.01	1.2 0.014		
Avg Stream Slope Riffle Slope							0.012	0.019	0.013	0.018	0.008	0.014	0.016	N/A N/A	0.01	0.014		
Ratio of Riffle Slope to Avg. Slope							1.417	1.474	1.5	1.8	1.5	1.5	1.8	N/A	3.6	1.5		
Pool Slope							0.001	0.001	0.01	0.002	0.003	0.005	0.002	N/A	0.0055	0.002		
Ratio of Pool Slope to Avg. Slope							0.1	0.1	0.4	0.1	0.4	0.4	0.1	N/A	0.6	0.1		
Maximum Pool Depth							1.4	1.5	2.2	1.3	0.8	2	1.3	N/A	3.1	4.8		
Ratio of Pool Depth to Avg. Depth							2.8	2.1	1.7	2.2	2	2	2.2	N/A	1.6	2.3		
Pool Width							7.7	24.3	18.5	10.7	9.1	21	12.5	N/A	40.6	50.3		
Ratio of Pool Width to Bankfull Width							1.5	2.7	1.9	1.2	1.4	1.4	1	N/A	1.3	1.5		
Pool Area							5.7 2	19.8 3.2	24.1	6.2 1.2	3.9	22.1	8 1.1	N/A	64.4	109.6		
Ratio of Pool Area to Bankfull Area Ratio of Pool to Pool Spacing				1			6.1	3.2 4.5	1.8 N/A	7	8.2	1.4 8.2	6.3	N/A N/A	1.1 7.3	1.6 9.2		
Ratio of Pool to Pool Spacing *BEHI							0.1	4.3	IN/A	/	6.2	0.2	0.3	IN/A	1.3	9.2		
Bankfull Mean Velocity							N/A	N/A	6.4		1				 			
Bankfull Discharge, cfs							N/A	N/A	85.8		1				1			
Ratio of Meander Length to Meander Bankfull							N/A	N/A	N/A	10	11	11	8	N/A	11.4	10.5		
Ratio of Radius of Curvature to Bankfull Width		Booobo					N/A	N/A	N/A	1.6	2.5	2.5	1.6	N/A	3.4			

Note: Reaches 2A1, 2B, and 3 compare to As-built study reaches 4 and 5.

Table IXa. Morphology and Hydraulic Monitoring Summary Purlear Creek Phase I / Project # 294 - Upper Main Reach 1 - 1050 Feet

Parameter				Section	1 1			C		ection	2							
			Rea	ch 1 Pool					Reach 1	Riffle								
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3 MY4 MY5								
BF Width (ft)	29.9	29.6	22.7	22.2	20.3		26.7	26.4	31.4	28.3	27							
	Floodprone Width (ft) (approx)						53	53	53	53 53								
BF Cross Sectional Area (ft ²)		35.5	14.8	11.06	12.2		39.6	39.6	41	41.3	41.2							
BF Mean Depth (ft)	1.2	1.2	0.6	0.5	0.6		1.5	1.5	1.3	1.5	1.5							
BF Max Depth (ft)	2.3	2.6	1.9	1.6	1.8		2.3	2.3	2.5	2.5	2.4							
Width/Depth Ratio							18.1	17.6	24.154	18.867	17.7							
Entrenchment Ratio (greater							2.0	2.0	1.7	1.9	2							
Bank Height Ratio	1.0	1	1	1	1		1.0 29.7	1 29.4	34.0	31.3	30.0							
Wetted Perimeter(ft)							1.3	1.3		1.3	1.4							
Hvdraulic radius (ft)							1.3	1.3	1.2	1.3	1.4							ļ
Substrate	12.4	0.006	0.4	27.2	0		17.70	0.6	1.01	0.0	20.2							
d50 (mm)		0.006	0.4	27.3	8		17.73	0.6	1.01	0.2	20.2							
d84 (mm)	35.7	0.2	1.14	68	16.5		36.4	1.5	4.42	4.43	68.6							
Parameter	Parameter MY-00 (2004)					(5)	MY-02 (2006) MY-03 (2007)						MV	-04 (20)(8)	MY-05 (2009)		
M Y -00 (2004)				IVI	Y-01 (200	101 1	-02 (20	00)	IVI I	-03 (20	107)	IVI I	-04 (20	508)	111 03 (2007)			
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
			ivica	141111	With											141111	IVIUA	Wica
Channel Beltwidth (ft)	25	87		-	-	202	37	202	46	37	202	46	37	202	46			1
Radius of Curvature (ft)		96		-	-	-	41	58	55	41	59	57	41	59	57			
Meander Wavelength (ft)	160	200		-	-	-	117	171	144	117 171 144			117	171	144			
Meander Width ratio	0.8	2.9		-	-	-	1.2	6.4	1.5	1.3	7.1	1.6	1.4	7.5	1.7			
Profile																	<u> </u>	
Riffle length (ft)		-	-	30.0	116.0	43.5	24	99	41	30	88	40.5	17	50	29			
Riffle slope (ft/ft)	0.020	0.120	0.060	0.011	0.040	0.018	0.013	0.029	0.019	0.013	0.028	0.019	0.015	0.031	0.022		1	
Pool length (ft)	29	136	58	13.0	56.0	25.0	15	48	26	13	48	23	13	47	23			
Pool spacing (ft)	74	193	120	28	225	64	28	117	68	28	118	73.5	28	136.5	69.25			
Additional Reach Parameters	M	Y-0 (20)04)	M	Y-01 (200	(5)	MY.	-02 (20	06)	MY	-03 (20	007)	MY	-04 (20	(800)	MY-05 (2009)		
Valley Length (ft)							1022											
Channel Length (ft)							1091											
Sinuosity							1.0	7										
Water Surface Slope (ft/ft)		0.009			0.014		0.015 0.015							0.015				
BF slope (ft/ft)		0.008			0.016		0.015 0.015							0.015				
Rosgen Classification		B4c			B5c	B5c B5c							B4c					

Table IXb. Morphology and Hydraulic Monitoring Summary Purlear Creek Phase I / Project # 294 - Upper Middle Trib Reach 2 - 260 Feet

Parameter			Cross	Section	1			С	ross S	ection	2							
			Read	ch 2 Riffle					Reach	2 Pool								
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MV3	MV4	MY5						
BF Width (ft)	17.4	16.2	17.3	10.1	14	IVIIJ	19.4	19.3	18.5	17.5	17.3	IVIII						
Floodprone Width (ft) (approx)	40	40	40	40	40		17.1	17.5	10.5	17.5	17.5							
BF Cross Sectional Area (ft ²)	11.9	12.4	8.6	3.2	4.5		12.8	13.4	7.6	6.2	6.7							
BF Mean Depth (ft)	0.7	0.8	0.5	0.3	0.3		0.7	0.7	0.4	0.4	0.4							
BF Max Depth (ft)	1.5	1.7	1.4	0.8	0.7		1.6	1.6	1.1	1.1	1							
Width/Depth Ratio	25.5	21.1	34.6	31.8	43													
Entrenchment Ratio (greater	2.3	2.5	2.3	3.9	2.9													
Bank Heigh Ratio	1.0	1.0	1.0	1.0	1		1.0	1.0	1.0	1.0	1							
Wetted Perimeter(ft)	18.8	17.8	18.3	10.7	14.6													
Hvdraulic radius (ft)	0.6	0.7	0.5	0.3	0.3													
Substrate																		
d50 (mm)	0.06	17.42	0.06	0.06	0.11		0.16	17.42	0.06	0.06	0.14							
d84 (mm)	4.23	50.98	0.06	0.27	0.29		1	72	0.45	0.3	0.34							
Parameter	M	Y-00 (2	004)	MS	Y-01 (20	05)	MV	-02 (20	006)	MV	-03 (20	007)	MY-04 (2008)			MY-05 (2009)		
	171	1-00 (2	004)	171	1-01 (20	171 1	-02 (20	700)	171 1	-05 (20	707)	171 1	-07 (20	000)	171 1	-03 (20	307)	
Pattern	Min	Max	Med	Min	Min Max Med			Min	Max	Med	Min	Max	Med	Min	Max	Med		
Channel Beltwidth (ft)	- 141111	- IVIAA	- IVICU	69	Max 70	Med 69	69	70 69		69 70 69		69	70	69	IVIIII	IVIAA	IVICU	
Radius of Curvature (ft)	_		17	62	81	73	56	68	63	56	68	63	56	68	63			
Meander Wavelength (ft)	_	-	-	236	255	245	236	255	245	236	255	245	236	255	245			
Meander Width ratio	_	-	-	4.3	4.3	4.3	4.0	4.0	4.0	3.9	4.0	3.9	4.0	4.0	4.0			
Profile Profile				5		5				2.7		3.7						
Riffle length (ft)	-	-	-	15.0	73.0	35.0	21	74	30	22	66	37.5	N/A	N/A	N/A			
Riffle slope (ft/ft)	-	-	-	0.003	0.017	0.007	0.016	0.024	0.019	0.008	0.016	0.015	N/A	N/A	N/A			
Pool length (ft)	10	18	13	5.0	25.0	11.0	16	23	19	11	19	16	N/A	N/A	N/A			
Pool spacing (ft)	42	100	71	29	93	45	40.5	95	67.75	40.5	136	88.25	N/A	N/A	N/A			
																	•	•
Additional Reach Parameters	M	Y-0 (20	004)	MY	Y-01 (200	05)		-02 (20	006)	MY	-03 (20)07)	MY	-04 (20	008)	MY-05 (2009)		
Valley Length (ft)					-		35							-				
Channel Length (ft)							393											
Sinuosity							1.10											
Water Surface Slope (ft/ft)		0.016			0.015		0.016 0.016							N/A				
BF slope (ft/ft)		0.020			0.018		0.014 0.016					0.017						
Rosgen Classification		C4			C4			C4		C5			C5					

*Note: Reach 2 was dry during the 2008 survey so no water surface slopes could be determined

Table IXc. Morphology and Hydraulic Monitoring Summary Purlear Creek Phase I / Project # 294 - Middle Main Reach 3 - 700

									~		_							
<u>Parameter</u>			<u>Cross Se</u>					<u> </u>		<u>ection</u>	2							
			Reach 3	3 Pool					Reach 3	3 Riffle								
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MY4	MY5						
BF Width (ft)	26.8	26.2	24.2	25.1	25.9		24.5	24.2	25.1	24.1	24.1							
Floodprone Width (ft) (approx)							60	60	60	60	60							
BF Cross Sectional Area (ft ²)	45.2	44.8	37	36.9	37.8		28.3	28.1	27.2	29.4	30.62							
BF Mean Depth (ft)	1.7	1.7	1.5	1.5	1.5		1.2	1.2	1.1	1.2	1.3							
BF Max Depth (ft)		3.3	2.5	2.5	2.5		2.1	2.1	2.4	2.5	2.5							
Width/Depth Ratio							21.3	20.9	23	19.7	19							
Entrenchment Ratio (greater							2.4	2.5	2.4	2.5	2.5							
Bank Height Ratio	1.2	1.2	1.2	1.2	1.2		1.0	1.0	1.0	1.0	1							
Wetted Perimeter(ft)							26.9	26.6	27.3	26.5	26.7							
Hydraulic radius (ft)							1.1	1.1	1.0	1.1	1.1							
Substrate																		
d50 (mm)	6.1	0.19	12.85	26.5	12.6		0.56	12.32	6.85	47.9	12							
d84 (mm)	22.63	8.25	37.94	54.5	62.5		14.36	36.86	33.46	77.6	68							
Parameter	M	Y-00 (20	104)	MV	-01 (20	105)	MV.	-02 (20	06)	MV	-03 (20	007)	MV	z-04 (20	008)	MV	-05 (20	2007
	171	1 00 (20	,01)	171 1	01 (20	03)	141 1	02 (20	00)	171 1	03 (20	507)	141 1	01 (2)	300)	141 1	03 (20	307)
P) (:		- X 1	7.6	L 1/) (1) (°	<u> </u>	1 1) (') (1) (:		1 1 1) ('		1) (1
Pattern Cl. 12 h itt (2)	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	37	58	\vdash	<u> </u>		- -		┷		-	-	-	-	-	-			
Radius of Curvature (ft)	27	94	igwdot	<u> </u>		-	<u> </u>	┷	-	-	-	-	-	-	-			
Meander Wavelength (ft)		356	igwdap	<u> </u>	-	<u> </u>	<u> </u>		-	-	-	-	-	-	-			
Meander Width ratio	1.4	2.2	igwdapprox	<u> </u>			<u> </u>		-	-	-	-	-	-	-			
Profile			\vdash	<u> </u>									4.0					
Riffle length (ft)				16	94	35	17	59	46	24	68	46	18	39	34			
Riffle slope (ft/ft)			0.020	0.003	0.028	0.014	0.005	0.051	0.014	0.004	0.030	0.013	0.012	0.042	0.017			
Pool length (ft)		74	51	9	84	20	17	68	29	29	50	36	25	50	36			
Pool spacing (ft)	79	132	112	29	120	66	36	145	73	46	128.5	97.5	46	139.5	75.25			
Additional Reach Parameters	M	Y-0 (20	04)	MY	-01 (20	(05)	MY·	-02 (20	06)	MY	-03 (20)07)	MY	7-04 (20	008)	MY	['] -05 (20	J09)
Valley Length (ft)								821										
Channel Length (ft)								850										
Sinuosity								1.04										
Water Surface Slope (ft/ft)		0.014			0.014			0.013			0.013			0.013				
BF slope (ft/ft)		0.015			0.013			0.015			0.013			0.013				

Table IXd. Morphology and Hydraulic Monitoring Summary Purlear Creek Phase I / Project # 294 - Lower Middle Trib (Upper Section) Reach 4 - 650 Feet

D			O O	1 4 •	1			<u> </u>		4	2							
Parameter				<u>section</u>	<u> </u>			<u> </u>		ection	<u> </u>							
			Keacn	4 Riffle					Reach	4 P001								
p: :	3.6370	3.6371	3.6372	1 1 (7/2	3.637.4) (X/5	1.0770	2.6371) (T/2	MY3	3.637.4	1.637.5						
Dimension BF Width (ft)	MY0 25.1	MY1 25.1	MY2 22.3	MY3 19.3	MY4 19.5	MY5	MY0 22.6	MY1 21.2	MY2 20.3	MY3 19.3	MY4 19	MY5						
Floodprone Width (ft) (approx)	50	50 50	50	19.3 50	19.5 50		22.6	21.2	20.3	19.3	19							
BF Cross Sectional Area (ft ²)	21.8	19.1	18.8	17.5	17.8		21.5	18.1	13.9	13.2	13.4							
BF Cross Sectional Area (It) BF Mean Depth (ft)	0.9	0.8	0.8	0.9	0.9		1	0.9	0.7	0.7	0.7							
BF Max Depth (ft)	1.6	1.5	2.2	2.1	2.1		2.3	2.2	2.2	2.0	2.1							
Width/Depth Ratio	28.9	32.9	26.5	21.4	21.4		2.3	2.2	2.2	2.0	2.1							
Entrenchment Ratio (greater	2.0	2.0	2.2	2.6	2.6													
Bank Height Ratio	1.0	1.0	1.0	1.0	1		1.0	1.0	1.0	1.0	1							
Wetted Perimeter(ft)	26.9	26.7	23.9	21.1	21.3		1.0	1.0	1.0	1.0	-							
Hvdraulic radius (ft)	0.8	0.7	0.8	0.8	0.8													
Substrate																		
d50 (mm)	10.36	0.69	0.09	0.11	0.09		3.93	3	0.38	0.2	0.75							
d84 (mm)	20.74	11.89	1.35	0.73	20.3		13.53	13.14	1.95	1.92	13.7							
Parameter	M	Y-00 (2	004)	MY	-01 (20	05)	MY.	-02 (20	06)	MY	-03 (20	007)	MY	-04 (20	(800	MY	7-05 (20	009)
		- 00 (-			(,						, , ,		* ((–				, , ,
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	28	71	1,100	28	55	47	28	55	47	28	55	47	28	55	47	141111	111471	Mica
Radius of Curvature (ft)	81	81		37	77	49	37	77	49	37	77	49	37	77	49			
Meander Wavelength (ft)	116	170		120	157	135	120	157	135	120	157	135	120	157	135			1
Meander Width ratio	1.1	2.8		1.1	2.2	1.9	1.3	2.5	2.1	1.5	2.8	2.4	1.5	2.9	2.5			
Profile																		
Riffle length (ft)				7	60	19	24	50	44.5	16	50	31	10	36	26			
Riffle slope (ft/ft)				0.007	0.019	0.012	0.008	0.036	0.015	0.004	0.023	0.015	0.010	0.040	0.020			
Pool length (ft)	54	85	70	6	45	23	15	91	27	14	64	26.5	12	64	19		L	
Pool spacing (ft)	88	184	131	29	115	49	26	106	63	30.5	90	62.5	27	90	62		L	
Additional Reach Parameters	M	Y-0 (20	004)	MY	-01 (20	05)	MY-	-02 (20	06)	MY	-03 (20)07)	MY	7-04 (20	008)	MY	7-05 (20)09)
Valley Length (ft)								599										
Channel Length (ft)								669										
Sinuosity								1.12										
Water Surface Slope (ft/ft)		0.015			0.013			0.014			0.014	·		0.014				
BF slope (ft/ft)		0.015			0.015			0.015			0.014			0.014				
Rosgen Classification		C4			C5			C5			C5			C5				

Table IXe. Morphology and Hydraulic Monitoring Summary Purlear Creek Phase I / Project # 294 - Lower Middle Trib (Lower Section) Reach 5 - 700 Feet

						Nea	.cn 3 - 7	UU I C	c t									
Parameter		C		Section	1				s Sect									
			Reach	5 Pool				Res	ach 5 Ri	ffle								
D:	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MXA	MY5						
Dimension BF Width (ft)	21.4	21.4	23.7	22. 2.	22.2	IVI I S	26.3	25	23.5	24.8	24	IVI I 3						
Floodprone Width (ft) (approx)	Z1. 4	∠1. 4	23.1	22.2	22.2		60	60	60	60	60							
BF Cross Sectional Area (ft ²)	26.8	29.4	27.4	26.2	26.4		23.1	19.8	17.9	17.9	18.2							
BF Cross Sectional Area (It) BF Mean Depth (ft)	1.3	14	1 2	1.2	1.2		0.9	0.8	0.8	0.7	0.8							
BF Max Depth (ft)	2.5	3.3	2.9	3.1	3		1.7	1.7	1.4	1.7	1.7							
Width/Depth Ratio	2.3	3.3	2.)	3.1			30	31.7	30.9	34.4	31.7							
Entrenchment Ratio (greater							2.3	2.4	2.6	2.4	2.5							
Bank Height Ratio	1.0	1.0	1.0	1.0	1		1.2	1.2	1.2	1.2	1.2							
Wetted Perimeter(ft)	1.0	1.0	1.0	1.0			28.1	26.6	25.1	26.2	25.6							
Hydraulic radius (ft)							0.8	0.7	0.7	0.7	0.7							
Substrate																		
d50 (mm)	0.5	2.06	0.13	0.48	0.16		15.85	0.54	0.07	4.3	2.5							
d84 (mm)	8.25	13.06	1.48	19.3	3		29.94	3.33	0.75	34.2	9.4							
Parameter	MY	-00 (20	04)	MY	r-01 (20	05)	MY.	-02 (20	06)	MY	-03 (20	007)	MY	-04 (20	(800	MY	-05 (20	009)
		- (- (,			,		(- (, , ,		* (= .				, , ,
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	28	71		36	50	45	36	50	45	36	50	45	36	50	45			
Radius of Curvature (ft)	81	81		40	87	51	40	87	47	40	87	47	40	87	47			
Meander Wavelength (ft)	116	170		113	187	145	113	187	145	113	187	145	113	187	145			
Meander Width ratio	1.3	3.3		1.4	2.0	1.8	1.5	2.1	1.9	1.5	2.0	1.8	1.5	2.1	1.9			
Profile																		
Riffle length (ft)				5	49	28	16	48	33	16	44	32	17	36	28			
Riffle slope (ft/ft)				0.005	0.039	0.014	0.009	0.025	0.016	0.005	0.029	0.014	0.006	0.027	0.011			
Pool length (ft)	23	76	49	11	38	26	13	37	21.5	13	312	21	13	343	26.5			
Pool spacing (ft)	81	110	97	19	77	51	34	83	44	27	82.5	48	27	77	48			
1 cor spacing (it)	0.1	110	7.	/			5.	- 05			02.0							
Additional Reach Parameters	MY	Z-0 (200)4)	MY	-01 (20	05)	MY.	-02 (20	06)	MY	-03 (20	007)	MΥ	-04 (20	008)	MY	'-05 (20	009)
	1,11	3 (200	, . <i>,</i>	1,11	31 (20	<i></i>		674	• • •	1,111	33 (20	, , ,	.,,,,,	3.(2)	,	1,11	35 (20	,
Valley Length (ft) Channel Length (ft)								674 778										
Sinuosity								<u>//8</u> 1.15								—		
Water Surface Slope (ft/ft)		0.012			0.012			0.012			0.011			0.011				
BF slope (ft/ft)		0.012			0.012			0.012			0.011			0.011				
DI SIODE (IVIL)		0.009			0.011			0.010			0.011			0.011				

Rosgen Classification

C4

C4

C4

C4

C4

Table IXf. Morphology and Hydraulic Monitoring Summary Purlear Creek Phase I / Project # 294 - Lower Main Reach 6 - 900 Feet

						IXCa	ich 0 - 3	700 F C	Ci									
Parameter		C	ross Se		1			C 1	ross Sc		2							
			Reach (6 Pool					Reach 6	Riffle								
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY0	MY1	MY2	MY3	MXA	MY5						
BF Width (ft)	18.9	19.2	17.9	19.7	19.6	MYS	27.1	26.9	34.3	37.5	32	WIYS						
Floodprone Width (ft) (approx)	18.9	19.2	17.9	19.7	19.0		60	60	60	60	60							
BF Cross Sectional Area (ft ²)	43.6	36.3	33.2	31.8	35.1		40.2	37.8	35.2	35.5	39.1							
BF Closs Sectional Area (II) BF Mean Depth (ft)	2.3	1 9	1.9	1.6	1.8		1.5	1.4	33.2	0.9	1 2							
BF Mean Depth (It) BF Max Depth (ft)	3.8	3.5	3.3	3.4	3.3		2.5	2.9	3	3	3							
Width/Depth Ratio	1.0	1.0	1.0	1.0	3.3 1		18.3	19.2	33.4	39.6	26.2							
Entrenchment Ratio (greater	1.0	1.0	1.0	1.0	1		2.2	2.2	17	1.6	1 9							
Bank Height Ratio							1.0	1.0	1.7	1.0	1.9							
Wetted Perimeter(ft)							30.1	29.7	36.3	39.3	34.4							
Hydraulic radius (ft)							1.3	1.3	1.0	0.9	1.1							
Substrate																		
d50 (mm)	11.33	0.11	0.29	0.86	0.19		0.06	1.5	11.65	18.4	6.85							
d30 (mm)	24.5	14.22	12.85	32	6.35		11.01	65.75	45.17	47.7	38.5							
<u>u84 (IIIII)</u>		14.22	12.83	32	0.33		11.01	03.73	43.17	47.7	36.3							
Parameter	MY	-00 (20	004)	MY	r-01 (20	005)	MY	-02 (20	06)	MY	-03 (20	007)	MY	7-04 (20	008)	MY	7-05 (20	009)
		`				,		`	,		`	,						
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	39	87		55	71	68	66	93	73	66	93	73	66	93	73			
Radius of Curvature (ft)	39	75		50	139	73	43	90	65	43	90	65	43	90	65			
Meander Wavelength (ft)	168	240		182	238	194	188	238	198	188	238	198	188	238	198			
Meander Width ratio	1.4	3.2		2.0	2.6	2.5	1.9	2.7	2.1	1.8	2.5	1.9	2.1	2.9	2.3			
Profile																		
Riffle length (ft)	-	-	-	30	36	34	19	32	24	19	45	30	13	44	28			
Riffle slope (ft/ft)		-	-	0.015	0.029	0.019	0.021	0.037	0.032	0.008	0.029	0.016	0.011	0.020	0.017			
Pool length (ft)	40	110	71	37	147	84	29	145	62	29	140	49	26	140	42			
Pool spacing (ft)	160	213	190	47	128	94	47	128	76	55	130	67.5	50	126	74			
		/																
Additional Reach Parameters	M'	Y-0 (20	04)	MY	7-01 (20)05)	MY	-02 (20	06)	MY	-03 (20)07)	MY	7-04 (20	008)	MY	7-05 (20)09)
Valley Length (ft)								805										
Channel Length (ft)								931										
Sinuosity								1.16										
Water Surface Slope (ft/ft)		0.010			0.010			0.012			0.012			0.012				
BF slope (ft/ft)		0.009			0.010			0.012			0.012			0.012				
Rosgen Classification		B4c			B4c			B4c			B4c			B4c				

VI. Methodology Section

Monitoring methods used are based on US Army Corps of Engineering and NC Division of Water Quality Guides as referenced below.

The taxonomic standard for vegetation used in this report was based on "Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas", by Alan S. Weakley. The vegetation monitoring protocol used for collecting vegetation data was the CVS-EEP Protocol for Recording Vegetation Version 4.0 (Lee et al. 2006).

References:

Harman, W.H. et al. 1999. *Bankfull Hydraulic Geometry Relationships for North Carolina Streams*. AWRA Wildland Hydrology Symposium Proceedings. Edited By: D.S. Olsen and J.P. Potyondy. AWRA Summer Symposium. Bozeman, MT.

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006. *CVS-EEP Protocol for Recording Vegetation*, Version 4.0 (http://cvs.bio.unc.edu/methods.htm)

Rosgen, D.L. (1996) Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, CO.

USACOE (2003) Stream Mitigation Guidelines. USACOE, USEPA, NCWRC, NCDENR-DWQ

Weakley, Alan S., Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas

APPENDIX A

- 1. Vegetation Data Tables
 - Table 1. Vegetation Metadata
 - Table 2. Vegetation Vigor by Species
 - Table 3. Vegetation Damage by Species
 - Table 4. Vegetation Damage by Plot
 - Table 5. Stem Count by Plot and Species
 - Table 6. Vegetation Problem Area Tables
 - Table 10. Vigor
 - Table 11. Damage
- 2. Vegetation Problem Area Photos
- 3. Vegetation Monitoring Plot Photos

Notes:

 No separate plan view was established for vegetation conditions. See monitoring plan view for this information. Report Prepared By Nathan Buchanan

Date Prepared 11/25/2008 23:50

database name CVS_EEP_EntryTool_v220.mdb

database location C:\Users\nathan\Desktop

computer name IMELT

DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT-----

Metadata This worksheet, which is a summary of the project and the project data.

Each project is listed with its PLANTED stems, for each year. This excludes live stakes

Proj, planted and lists stems per acre.

Each project is listed with its TOTAL stems, for each year. This includes live stakes, all

Proj. total stems planted stems, and all natural/volunteer stems. Listed in stems per acre.

Plots List of plots surveyed.

Vigor Frequency distribution of vigor classes.

Vigor by Spp Frequency distribution of vigor classes listed by species.

List of most frequent damage classes with number of occurrences and percent of total

Damage stems impacted by each.

Damage by Spp Damage values tallied by type for each species.

Damage by Plot Damage values tallied by type for each plot.

ALL Stems by Plot Count of total living stems of each species (planted and natural volunteers combined) for

and spp each plot; dead and missing stems are excluded.

PROJECT SUMMARY-----

Project Code Purlear 1
project Name Purlear Phase 1

Description River Basin length(ft)

stream-to-edge width

(ft)

area (sq m)
Required Plots
(calculated)
Sampled Plots

Sampled Plots 25

Table 2. Vegetation Vigor by Species

	Species	4	3	2	1	0	Missing	Unknown
	Alnus serrulata	18	19	3	2		1	2
	Aronia arbutifolia		2	1	1			
	Betula nigra	39	7	2		5	3	5
	Celtis occidentalis			1	3		1	
	Cephalanthus occidentalis		1					1
	Cornus amomum	20	114	45	47	2	11	11
	Diospyros virginiana	1	5	7			2	3
	Fraxinus pennsylvanica	28	18	16	6		1	1
	Halesia carolina			1				
	Nyssa sylvatica	1	1	4	1		1	
	Quercus michauxii	14	11	16	13			5
	Quercus phellos	22	15	8	12		1	2
	Salix nigra	84	8	6	2	3	7	1
	Sambucus canadensis		1	2	1			
	Carpinus caroliniana				4			
	Hamamelis virginiana		2				2	1
	Populus deltoides	3				1	1	
	Acer rubrum				1		1	
TOT:	18	230	204	112	93	11	32	32

Table 3. Vegetation Damage by Species

	Species	All Damage Catagories	(no damage)	Beaver	Deer	Diseased	Human Trampled	Insects	Livestock	Site Too Dry	Site Too Wet	Unknown	Vine Strangulation	(other damage)
	Acer rubrum	2	1				_		1					
	Alnus													
	serrulata	45	19	1				3	2			12	7	1
	Aronia arbutifolia	4							1			2	1	
	Betula nigra	61	47			2		1	1	1		9		
	Carpinus caroliniana	4						·	4					
	Celtis occidentalis	5	1						2			1	1	
	Cephalanthus occidentalis	2	1										1	
	Cornus amomum	250	40		2	55	7	4	78		3	51	9	1
	Diospyros virginiana	18	4						1			13		
	Fraxinus pennsylvanica	70	29		1	9	4		18	1		6	2	
	Halesia carolina	1										1		
	Hamamelis virginiana	5	3						1			1		
	Nyssa sylvatica	8	3						1			2	2	
	Populus deltoides	5	4						1					
	Quercus michauxii	59	17		1	4		4	19			11	3	
	Quercus phellos	60	25		1		1	3	18			10	2	
	Salix nigra	111	91	1				2	5			10	2	
	Sambucus canadensis	4						1				3		
TOT:	18	714	285	2	5	70	12	18	153	2	3	132	30	2

Table 4. Vegetation Damage by Plot

		All Damage	(no				Human			Site Too	Site Too		Vine	(other
	plot	Categories	damage)	Beaver	Deer	Diseased	Trampled	Insects	Livestock	Dry	Wet	Unknown	Strangulation	damage)
	3	21							17			4		
	4	39	15		4			2			3	12	1	2
	5	34	4			2	4	1	17			6		
	6	41	17						21			3		
	7	43	7			5		3	25			3		
	9	8	2						5			1		
	10	24	2						22					
	11	24	8						14			2		
	12	25	10			1	1	1	11			1		
	13	21	14						5			2		
	14	14	7				1	1				5		
	15	21	4						14			3		
	16	43	7			27		6				3		
	17	42	29									13		
	18	10	2									7	1	
	29	10	6		1					1		2		
	21	19	13					1				5		
	23	30	2									1	27	
	24	15	14			1								
	26	21	3			12	3	1				2		
	30	23	2			14						7		
	31	60	38			1		1	2			17	1	
	32	37	25	1		5	1			1		4		
	33	36	27			2						7		
	34	53	27	1			2	1				22		
TOT:	25	714	285	2	5	70	12	18	153	2	3	132	30	2

Table 5. Stem Count by Plot and Species

	Species	Total Stems	# plots	avg# stems	3	4	5	6	7	9	10	11	12	13	14	15	16	17	18	21	23	24	26	29	30	31	32	33	34
	Acer saccharinum	1	1	1																									1
	Ailanthus altissima	1	1	1																								1	
	Albizia julibrissin	1	1	1																				1					
	Alnus serrulata	50	13	3.85		2	1	6	2	2				2		3			1			6		1		9	8		7
	Aronia arbutifolia	5	4	1.25							2											1			1				1
	Betula nigra	63	16	3.94		5	2	1	4			4		4	6		3	2	5				3		1	7	8	6	2
	Celtis occidentalis	5	2	2.5												3			2										
	Cephalanthus occidentalis	2	2	1																		1							1
	Cornus amomum	270	20	13.5	16	29	10	10	25		15	7	13	7		5	28	16				9	2	10	14	12	14	1	27
	Diospyros virginiana	23	9	2.56	5					1			1					1	1		4						1	6	3
	Fraxinus pennsylvanica	69	19	3.63	1	7	12	2			4	2	1	2	2	5	2	5		5		2	6	7		2	1		1
	Halesia carolina	1	1	1																	1								
	Juglans nigra	8	3	2.67	1						1															6			
	Ligustrum sinense	38	3	12.67									36				1				1								
	Nyssa sylvatica	8	5	1.6												1					1	1				3		2	
	Oxydendrum arboreum	3	1	3																3									
	Pinus taeda	1	1	1																						1			
	Pinus virginiana	23	2	11.5																22					1				
	Pyrus calleryana	1	1	1																							1		
	Quercus michauxii	60	20	3		4	6	3			2	7	2	2	3	1	2	1	2	3	4	3	1		6		5	2	1
	Quercus phellos	60	14	4.29		1	3	8	6	5			2				11	2			2	2	1	1		8		8	
	Salix nigra	111	22	5.05	3	3	3	17	6	1		3		5	2	4	2	17		1	4	2	1	1	1	19	1	9	6
	Sambucus canadensis	7	6	1.17											1					2		1				1	1	1	
	Sambucus nigra	15	1	15																							15		
	Rhus copallinum	1	1	1																	1								
	Ilex opaca	1	1	1																	1								
	Carpinus caroliniana	4	1	4							4																		
	Catalpa	4	2	2					2	2																			
	Juniperus virginiana	4	3	1.33	1														2							1			
	Hamamelis virginiana	4	3	1.33				1		1			2																
	Liriodendron tulipifera	15	7	2.14		2		1												5	3	1				2			1
	Platanus occidentalis	12	4	3														4			5	1				2			
	Prunus serotina	38	10	3.8	4	1		1	2	8				10				1		3		3				5			
	Populus deltoides	4	3	1.33							1															1		2	
	Acer rubrum	181	16	11.31		3		2	1	15	38	24	8	1	1	1			1	2					27	54	1		2
TOT:	35	1094	35		31	57	37	52	48	35	67	47	65	33	15	23	49	49	14	46	27	33	14	21	51	133	56	38	53

Table 6. Vegetation Problem Areas

Issue	UTM N	UTM E	Probable Cause	Photo
Bare flood plain	4006028	0473744	Head cut from pasture	VPA-1
			channel	
Bare flood plain	4006168	0473771	Head cut from pasture	VPA-2
			channel	
Bare bank	4006343	0473269	Constructed steep slope	VPA-3
Kudzu Invasion	N 36.20173	W -81.29724	Animal dispersal	VPA-4

Table 10. Vigor

vigor	Count	Percent
0	11	1.5
1	93	13
2	112	15.7
3	204	28.6
4	230	32.2
Missing	32	4.5
Unknown	32	4.5

Table 11. Damage

Damage	Count	Percent Of Stems
(no damage)	285	39.9
Livestock	153	21.4
Unknown	132	18.5
Diseased	70	9.8
Vine Strangulation	30	4.2
Insects	18	2.5
Human Trampled	12	1.7
Deer	5	0.7
Site Too Wet	3	0.4
Site Too Dry	2	0.3
Beaver	2	0.3
(other damage)	2	0.3
(no damage)	285	39.9

Vegetation Problem Area Photos

Purlear 1

VPA-1

VPA-2

Purlear 1

VPA-3

Vegetation Monitoring Plot Photos

Plot 03, 30-July-2008

Plot 04, 30-July-2008

Plot 05, 30-July-2008

Plot 06, 31-July-2008

Plot 07, 30-July-2008

Plot 09, 30-July-2008

Plot 10, 30-July-2008

Plot 11, 30-July-2008

Plot 12, 29-July-2008

Plot 13, 29-July-2008

Plot 14, 28-July-2008

Plot 15, 29-July-2008

Plot 16, 29-July-2008

Plot 17, 30-July-2008

Plot 18, 30-July-2008

Plot 21, 31-July-2008

Plot 23, 31-July-2008

Plot 24, 31-July-2008

Plot 26, 31-July-2008

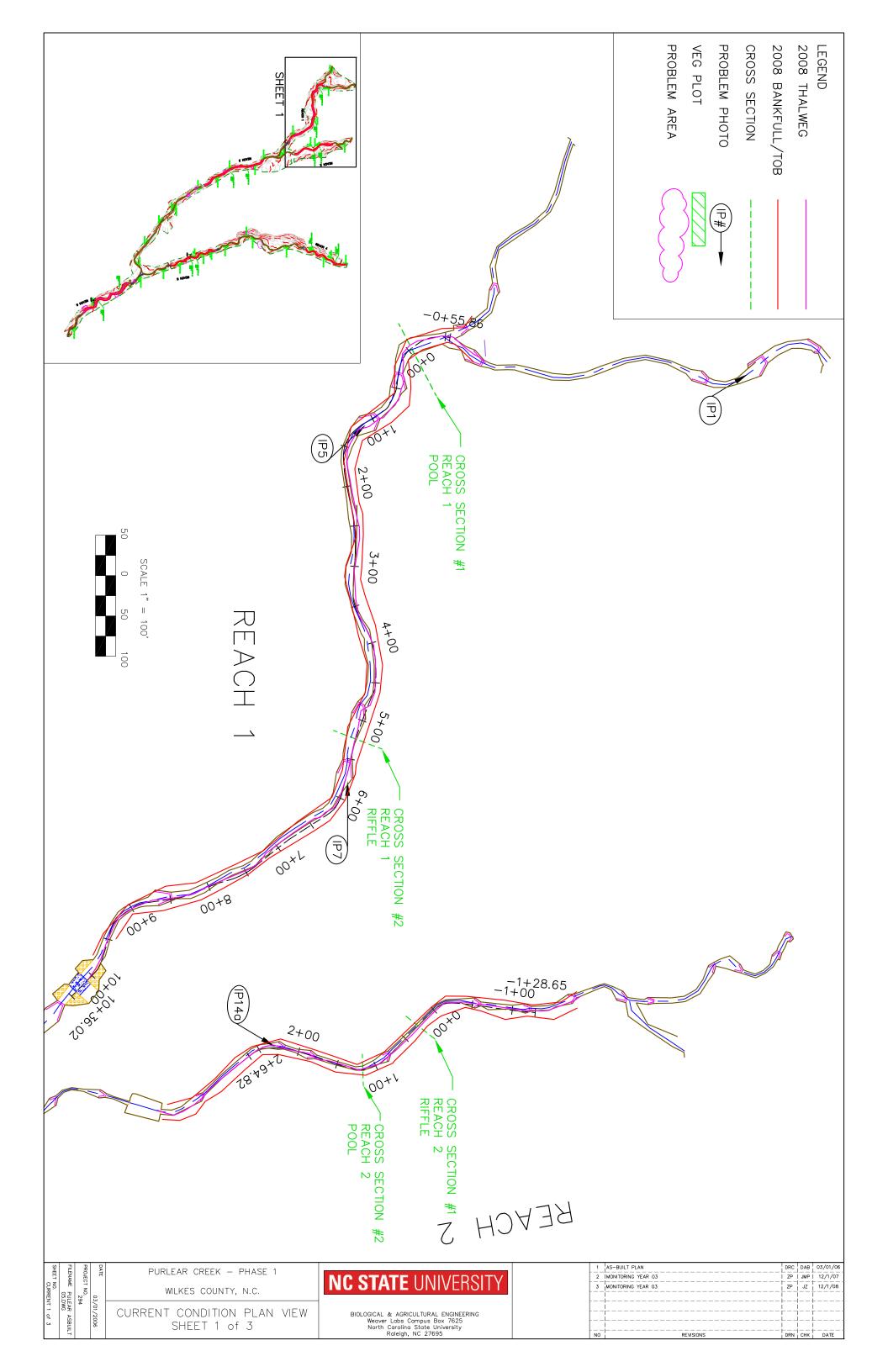
Plot 29, 31-July-2008

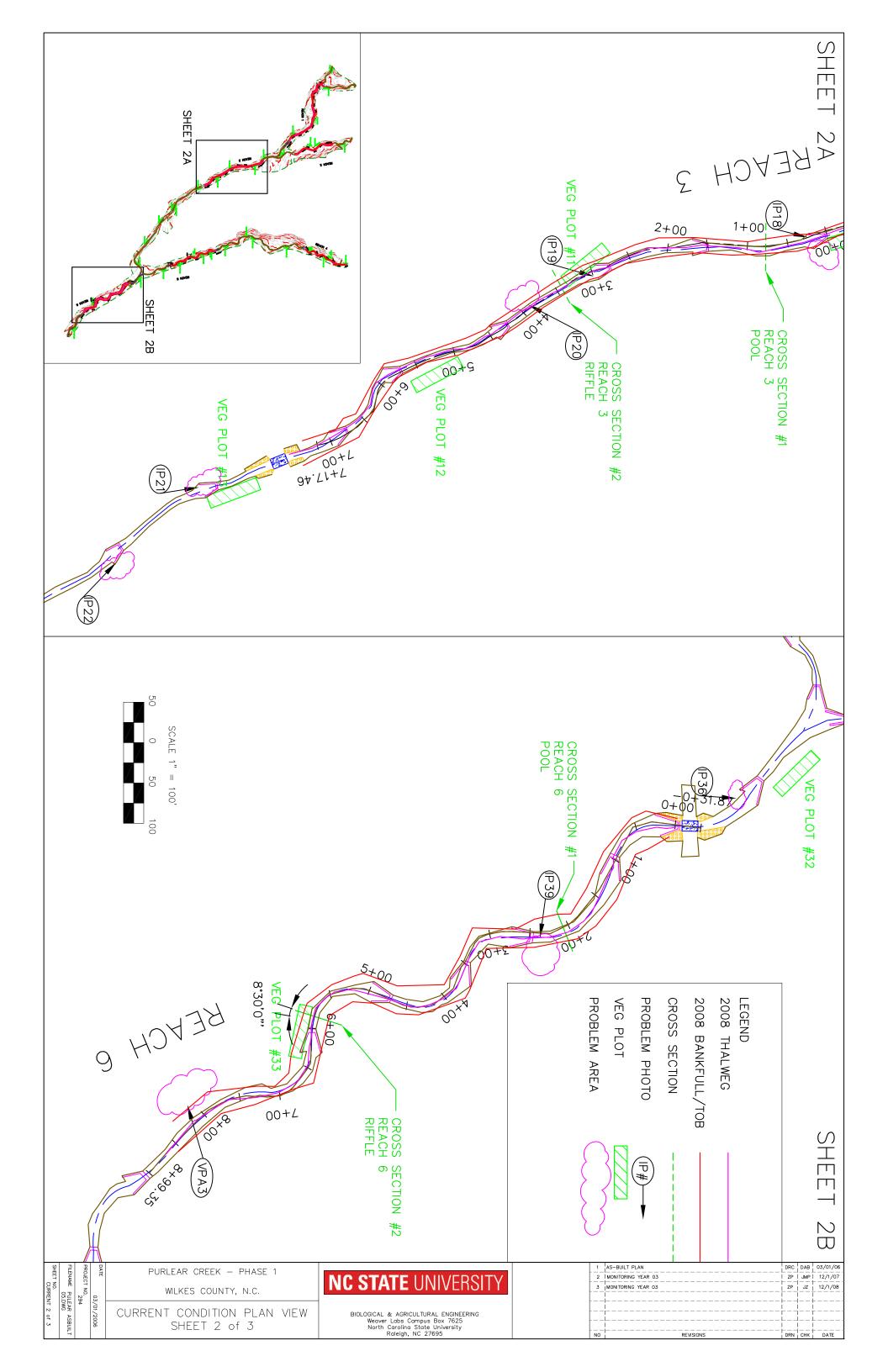
Plot 30, 31-July-2008

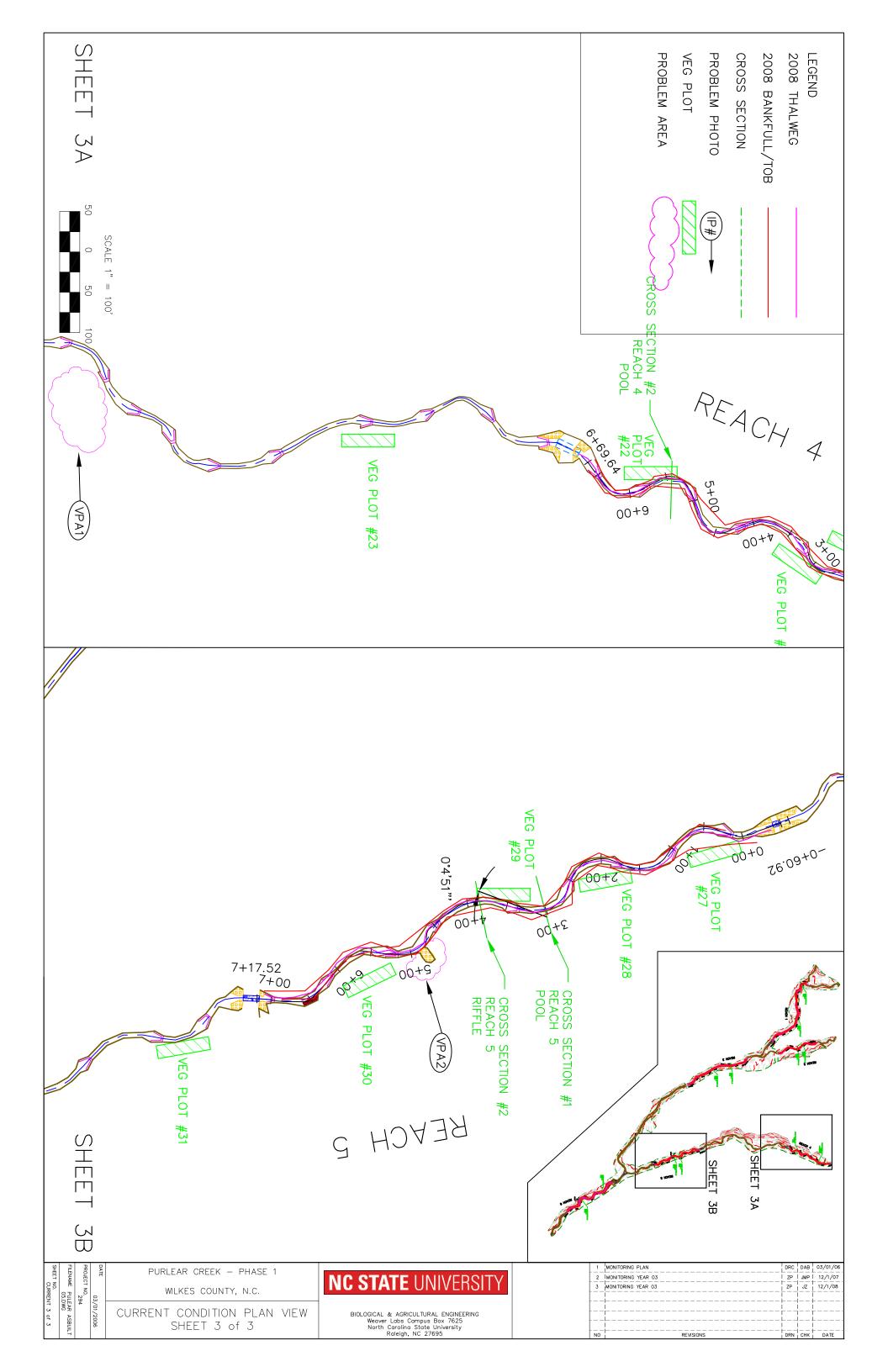
Plot 31, 15-August-2008

Plot 32, 30-July-2008

Plot 33, 15-August-2008




Plot 34, 15-August-2008


APPENDIX B

Morphology Raw Data

- 1. Current Conditions Plan View
- 2. Stream Problem Area Table
- 3. Stream Problem Area Photos/Project Photo Log
- 4. Visual Morphological Stability Assessment Tables
- 5. Cross section and Pebble Count Plots and Raw Data Tables
- 6. Longitudinal Plots
- 7. Feature Slope and Length Calculations
- 8. Channel Pattern Measurements

Table B1. Stream Problem Area Table Purlear Creek Phase I / Project # 294 Reaches 1 - 6

** = *				
Feature Issue	Reach	Problem/ Photo Number	Station Numbers	Suspected Cause
Bed Elevation Drop		IP1	Above Study Reach	Steep Channel Grade Drop Designed into Structure
	Reach 1	IP5	1+00	
		IP7	5+50	
Piping	Reach 2	IP 14a	2+20	Large grade drop through the structure.
Bed Elevation Drop		IP19	2+77	Steep Channel Grade Drop Designed into Structure
		IP21	Below Study Reach	
Slump Arm	Reach 3	IP 18	0+00	Poor Soils, Lack of sufficient footers
Erosion / Ground Hog	Reach 5	IP20	4+00	Ground Hogs
Tunnels				
Slump Arm		IP 22	Below Study Reach	Poor Soils, Lack of sufficient footers
Drainage Tile	Reach 6	IP36	Above Study Reach	Farmer
Drainage Tile	Keach 0	IP39	2+10	Farmer

2008 Purlear Phase I Stream Problem Areas

IP 1 Bed Elevation Drop and Loose Boulder (Upstream of Study Reach)

IP 5 Bed Elevation Drop and Piping at Left Arm (Station 0+89)

IP 7 Bed Elevation Drop (Station 5+50)

IP14a Piping through cross vane (Station 2+20) – Creek bed dry in 2007 and 2008

IP 18 Slump Arm (Station 0+00)

IP 19 Bed Elevation Drop (Station 2+77)

IP 20 Erosion Ground Hog Tunnels (Station 4+00)

IP 21 Bed Elevation Drop and Piping Under Left Arm (Below Study Reach)

IP 22 Slump Arm and Piping (Below Study Reach)

IP 36 Tile (Above Study Reach)

IP 39 Tile (Station 2+10)

Purlear Creek Photo Log 2008

P1. Start Downstream

P2. Start Upstream

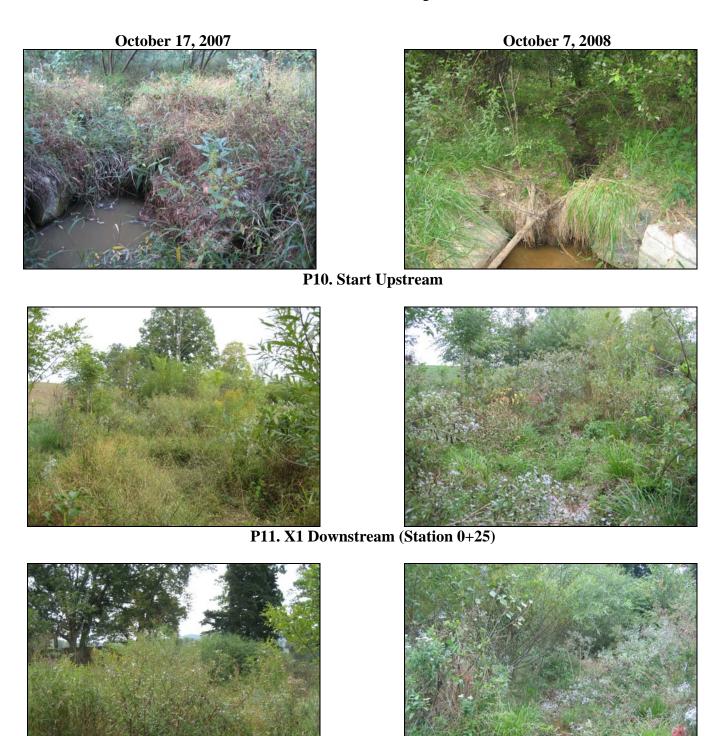
P3. X1 Downstream (Station 0+00)

P4. X1 Upstream (Station 0+00)

P5. X2 Downstream (Station 5+25)

P6. X2 Upstream (Station 5+25)

P7. End Downstream

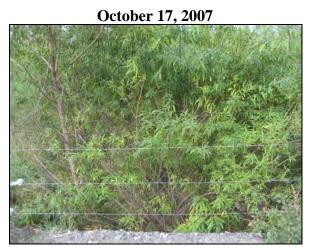


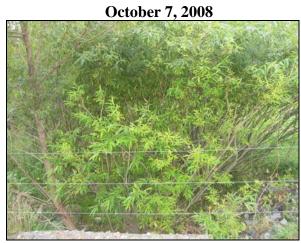
P8. End Upstream

P9. Start Downstream

P12. X1 Upstream (Station 0+25)

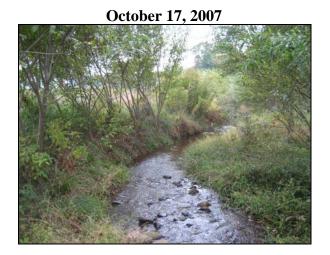
P13. X2 Downstream (Station 1+20)




P14. X2 Upstream (Station 1+20)


P15. End Downstream

P16. End Upstream



P17. Start Downstream

P18. Start Upstream

P19. X1 Downstream (Station 0+80)

P20. X1 Upstream (Station 0+80)

P21. X2 Downstream (Station 3+45)

P22. X2 Upstream (Station 3+45)

P23. End Downstream

P24. End Upstream

P25. Start Downstream

P26. Start Upstream

P27. X1 Downstream (Station 1+75)

P30. X2 Upstream (Station 5+45)

P31. End Downstream

P32. End Upstream

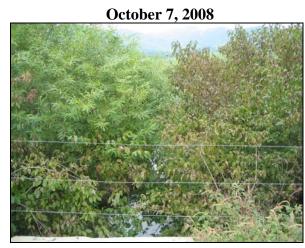
P33. Start Downstream

P34. Start Upstream

P35. X1 Downstream (Station 3+00)

P36. X1 Upstream (Station 3+00)

P37. X2 Downstream (Station 3+85)


P38. X2 Upstream (Station 3+85)

P39. End Downstream

P40. End Upstream

Reach 6

P41. Start Downstream

P42. Start Upstream

P43. X1 Downstream (Station 2+05)

P44. X1 Upstream (Station 2+05)

P45. X2 Downstream (Station 5+80)

P46. X2 Upstream (Station 5+80)

P47. End Downstream

P48. End Upstream

	T	able B2. Visual Mor	phological S	Stability Assessme	ent	
	P	urlear Creek Phase	I / Project #		n	
Feature	Metric (per As-built and	(# Stable) Number	Total number	Total Number / feet in	% Perform in	Feature Perform.
Category	reference baselines)	Performing as Intended	per As-built	unstable state:	Stable Condition2	Mean or Total3
A. Riffles	1. Present?4	12	13	NA	92	
	Armor stable (e.g. no displacement)?	12	13	NA	92	
	Facet grade appears stable?	12	13	NA	92	
	4. Minimal evidence of embedding/fining?	12	13	NA	92	
	5. Length appropriate?	12	13	NA	92	92%
B. Pools	Present? (e.g not subject to severe aggrad. or migrat.?)4	13	13	NA	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	13	13	NA	100	
	3. Length appropriate?	10	13	NA	77	92%
C. Thalweg	Upstream of meander bend (run/inflection) centering? 5	8	8	NA	100	
	2. Downstream of meander (glide/inflection) centering? 5	8	8	NA	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	8	8	NA	100	
	Of those eroding, # w/concomitant point bar formation?	0	0	NA	100	
	3. Apparent Rc within spec?	3	3	NA	100	
	4. Sufficient floodplain access and relief? 6	8	8	NA	100	100%
E. Bed General	General channel bed aggradation areas (bar formation)	NA	NA	0/0	100	
	Channel bed degradation areas of increasing down- cutting or head cutting?	NA	NA	0/0	100	100%
F. Bank	Actively eroding, wasting, or slumping bank	NA	NA	0/0	100%	100%
G. Vanes	Free of back or arm scour?	4	5	NA	80	
	2. Height appropriate?	1	5	NA	20	
	Angle and geometry appear appropriate?	5	5	NA	40	
	4. Free of piping or other structural failures?	4	5	NA	80	55%
F. Wads/	1. Free of scour?	NA	NA	NA	NA	
Boulders	2. Footing stable?	NA	NA	NA	NA	NA

Footnotes:

The above table should be completed using the visual assessment data form for each project reach/segment

It is recognized that the various metrics within a feature category may not have equal influence on the overall stability of that feature and that this does not incorporate weighting or scoring; however, at this time, EEP requires documentation of the relevant observations for these feature categories.

- 1 Metrics that are spatial estimates should be entered as: The number of locales over the reach for which the failing condition is observed / followed by the total linear distance (feet) or area for which the failing or unstable condition is observed.
- In the case of categorical metrics for which a feature count is involved, this is simply calculated as the number of functional features that are in a state of stability as a percentage of the total. In the case of those metrics based on footage or aerial extent it is that amount in a state of failure or instability expressed as a proportion of the total amount of that feature. The resulting proportion is then subtracted from 1 and then multiplied by 100 to give a percentage that represents the proportion of that feature category in a state of apparent stability.
- 3 The mean of the metrics for a given feature category.
- 4 Was the feature actually present as compared to the As-built or has the feature been completely obscured (aggraded) or removed (degraded).
- 5 Is the Thalweg centering up on the channel in between meander bends?
- Is the meander bend in a state of constriction?

		ble B2. Visual Mor _l ar Creek Phase I / I				
		Read	h 2 - 260 Fe	et		
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total number per As-built	Total Number / feet in unstable state:	% Perform in Stable Condition2	Feature Perform. Mean or Total ₃
A. Riffles	1. Present? 4	NA NA	4	NA	NA NA	mean or rotars
	Armor stable (e.g. no displacement)?	NA	4	NA	NA	
	3. Facet grade appears stable?	NA	4	NA	NA	
	4. Minimal evidence of embedding/fining?	NA	4	NA	NA	
	5. Length appropriate?	NA	4	NA	NA	NA
B. Pools	Present? (e.g not subject to severe aggrad. or migrat.?)4	NA	3	NA	NA	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	NA	3	NA	NA	
	3. Length appropriate?	NA	3	NA	NA	NA
C. Thalweg	Upstream of meander bend (run/inflection) centering? 5	4	4	NA	100	
	2. Downstream of meander (glide/inflection) centering?	4	4	NA	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	4	4	NA	100	
	2. Of those eroding, # w/concomitant point bar formation?	0	0	NA	100	
	3. Apparent Rc within spec?	4	4	NA	100	
	4. Sufficient floodplain access and relief? 6	4	4	NA	100	100%
E. Bed General	General channel bed aggradation areas (bar formation)	NA	393	1/350	10	
	Channel bed degradation areas of increasing down- cutting or head cutting?	NA	NA	0/0	100	55%
F. Bank	Actively eroding, wasting, or slumping bank	NA	NA	0/0	100%	100%
G. Vanes	Free of back or arm scour?	5	5	NA	100	
	Height appropriate?	1	5	NA	20	
	Angle and geometry appear appropriate?	5	5	NA	100	
	4. Free of piping or other structural failures?	3	5	NA	60	70%
H. Wads/	1 . F	N/A	NA	NA	N/A	
H. Wads/ Boulders	Free of scour? Freeting stable?	NA NA	NA NA	NA NA	NA NA	N/A
	2. Footing stable?	NA	NA	NA	NA	IN/A

Note: Reach 2 was dry during the 2008 survey making it dificult to determine the locations of riffles and pools

Footnotes:

The above table should be completed using the visual assessment data form for each project reach/segment

It is recognized that the various metrics within a feature category may not have equal influence on the overall stability of that feature and that this does not incorporate weighting or scoring; however, at this time, EEP requires documentation of the relevant observations for these feature categories.

- Metrics that are spatial estimates should be entered as: The number of locales over the reach for which the failing condition is observed /
- In the case of categorical metrics for which a feature count is involved, this is simply calculated as the number of functional features that are in a state of stability as a percentage of the total. In the case of those metrics based on footage or aerial extent it is that amount in a state of failure or instability expressed as a proportion of the total amount of that feature. The resulting proportion is then subtracted from 1 and then multiplied by 100 to give a percentage that represents the proportion of that feature category in a state of apparent stability.
- The mean of the metrics for a given feature category.
- 4 Was the feature actually present as compared to the As-built or has the feature been completely obscured (aggraded) or removed (degraded).
- 5 Is the Thalweg centering up on the channel in between meander bends?
- Is the meander bend in a state of constriction?

Table B2. Visual Morphological Stability Assessment Purlear Creek Phase I / Project # 294 - Middle Main												
Reach 3 - 700												
eature	Metric (per As-built and	(# Stable) Number	Total number	Total Number / feet in	% Perform in	Feature Perform						
Category	reference baselines)	Performing as Intended	per As-built	unstable state	Stable Condition	Mean or Totals						
. Riffles	1. Present?4	7	7	NA	100							
	Armor stable (e.g. no displacement)?	7	7	NA	100							
	3. Facet grade appears stable?	7	7	NA	100							
	4. Minimal evidence of embedding/fining?	7	7	NA	100							
	5. Length appropriate?	7	7	NA	100	100%						
B. Pools	Present? (e.g not subject to severe aggrad. or migrat.?)4	9	9	NA	100							
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	9	9	NA	100							
	3. Length appropriate?	9	9	NA	100	100%						
	Upstream of meander bend (run/inflection) centering?s	6	6	NA	100							
	Downstream of meander (glide/inflection) centering?	6	6	NA	100	100%						
D. Meanders	Outer bend in state of limited/controlled erosion?	5	6	NA	96							
	2. Of those eroding, # w/concomitant point bar formation?	0	0	NA	100							
	Apparent Rc within spec?	6	6	NA	100							
	4. Sufficient floodplain access and relief?6	6	6	NA	100	99%						
E. Bed General	General channel bed aggradation areas (bar formation)	NA	NA	0/0	100							
	Channel bed degradation areas of increasing down- cutting or head cutting?	NA	NA	0/0	100	100%						
. Bank	Actively eroding, wasting, or slumping bank	NA	NA	0/0	100%	100%						
G. Vanes	Free of back or arm scour?	6	6	NA	100							
	Height appropriate?	4	6	NA	66							
	Angle and geometry appear appropriate?	6	6	NA	100							
	Free of piping or other structural failures?	5	6	NA	83	87%						
I. Wads/	Free of scour?	NA	NA	NA	NA							
i. wads/ Boulders	2. Footing stable?	NA NA	NA NA	NA NA	NA NA	NA						
	2. 1 Ooung stable:	IVA	IVA	INA	IVA	IIA						

Footnotes:

The above table should be completed using the visual assessment data form for each project reach/segment

It is recognized that the various metrics within a feature category may not have equal influence on the overall stability of that feature and that this does not incorporate weighting or scoring; however, at this time, EEP requires documentation of the relevant observations for these feature categories.

- 1 Metrics that are spatial estimates should be entered as: The number of locales over the reach for which the failing condition is observed / followed by the total linear distance (feet) or area for which the failing or unstable condition is observed.
- In the case of categorical metrics for which a feature count is involved, this is simply calculated as the number of functional features that are in a state of stability as a percentage of the total. In the case of those metrics based on footage or aerial extent it is that amount in a state of failure or instability expressed as a proportion of the total amount of that feature. The resulting proportion is then subtracted from 1 and then multiplied by 100 to give a percentage that represents the proportion of that feature category in a state of apparent stability.
- The mean of the metrics for a given feature category.
- 4 Was the feature actually present as compared to the As-built or has the feature been completely obscured (aggraded) or removed (degraded).
- 5 Is the Thalweg centering up on the channel in between meander bends?
- 6 Is the meander bend in a state of constriction?

Table B2. Visual Morphological Stability Assessment Purlear Creek Phase I / Project # 294 - Lower Middle Trib (Upper Section) Reach 4 - 650 Feet Metric (per As-built and (# Stable) Number Total number Total Number / feet i % Perform in Feature Perform Category reference baselines) Performing as Intende per As-built unstable state Stable Condition Mean or Totals A. Riffles 1. Present?4 NA 100 2. Armor stable (e.g. no 8 NA 100 displacement)? NA 100 Facet grade appears stable? 75 4. Minimal evidence of 6 NA mbedding/fining? 5. Length appropriate? NA 100 8 8 92 B. Pools 1. Present? (e.g not subje 12 NA to severe aggrad. or Pool D:Mean Bkf >1.6?) 3. Length appropriate? 11 12 NA 92 92% C. Thalweg 1. Upstream of meander NΑ 100 bend (run/inflection) centering? 2. Downstream of meander NA 100 glide/inflection) centering 100% D. Meande 1. Outer bend in state of NA 100 limited/controlled erosion 2. Of those eroding, # NA w/concomitant point bar formation? Apparent Rc within spec 9 NA 100 Sufficient floodplain 9 NA 100 100% ccess and relief? 1. General channel bed 0/0 100 E. Bed NA NA aggradation areas (bar formation) Channel bed degradatio areas of increasing down cutting or head cutting? 100 100% NA NA 0/0 F. Bank Actively eroding, wasting, or slumping bank 100% NA NA 0/0 100% NA 100 G. Vanes Free of back or arm scour? 2. Height appropriate? 6 8 NA 75 Angle and geometry 100 NA appear appropriate? Free of piping or other NA 94% structural failures? H. Wads Free of scour? NA NA NA NA Boulders 2. Footing stable? NA NA NA NA

Footnotes:

The above table should be completed using the visual assessment data form for each project reach/segment

It is recognized that the various metrics within a feature category may not have equal influence on the overall stability of that feature and that this does not incorporate weighting or scoring; however, at this time, EEP requires documentation of the relevant observations for these feature categories.

- 1 Metrics that are spatial estimates should be entered as: The number of locales over the reach for which the failing condition is observed / followed by the total linear distance (feet) or area for which the failing or unstable condition is observed.
- 1 In the case of categorical metrics for which a feature count is involved, this is simply calculated as the number of functional features that are in a state of stability as a percentage of the total. In the case of those metrics based on footage or aerial extent it is that amount in a state of failure or instability expressed as a proportion of the total amount of that feature. The resulting proportion is then subtracted from 1 and then multiplied by 100 to give a percentage that represents the proportion of that feature category in a state of apparent stability.
- The mean of the metrics for a given feature category.
- 4 Was the feature actually present as compared to the As-built or has the feature been completely obscured (aggraded) or removed (degraded).
- 5 Is the Thalweg centering up on the channel in between meander bends?
- 6 Is the meander bend in a state of constriction?

	Table B2. Visual Morphological Stability Assessment Purlear Creek Phase I / Project # 294 - Lower Middle Trib (Lower Section) Reach 5 - 700 Feet											
	Turicar Creek	•			Lower Section)							
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total number per As-built	Total Number / feet in unstable state:	% Perform in Stable Condition2	Feature Perform. Mean or Total ³						
A. Riffles	1. Present?4	8	10	NA	80	mean of Total						
	Armor stable (e.g. no displacement)?	8	10	NA	80							
	3. Facet grade appears stable?	8	10	NA	80							
	4. Minimal evidence of embedding/fining?	8	10	NA	80							
	5. Length appropriate?	8	10	NA	80	80%						
D 1.	1. D	14	15	NA	02							
B. Pools	 Present? (e.g not subject to severe aggrad. or migrat.?) 4 	14	15	NA	93							
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	14	15	NA	93							
	3. Length appropriate?	14	15	NA	93	93%						
n m	1 IV			NY 4	100							
C. Thalweg	Upstream of meander bend (run/inflection) centering? 5	9	9	NA	100							
	Downstream of meander	9	9	NA	100							
	(glide/inflection) centering?					100%						
	10.116			27.4	100							
Meanders	1. Outer bend in state of limited/controlled erosion?	9	9	NA	100							
	2. Of those eroding, # w/concomitant point bar formation?	0	0	NA	100							
	3. Apparent Rc within spec?	9	9	NA	100							
	4. Sufficient floodplain access and relief?6	9	9	NA	100	100%						
E. Bed General	General channel bed aggradation areas (bar formation)	NA	NA	0/0	100							
	 Channel bed degradation areas of increasing down- cutting or head cutting? 			2.0	100	1000/						
		NA	NA	0/0	100	100%						
F. Bank	Actively eroding, wasting, or slumping bank	NA	NA	0/0	100%	100%						
3. Vanes	Free of back or arm scour?	5	5	0/0	100							
	2. Height appropriate?	4	5	0/0	80							
	3. Angle and geometry appear appropriate?	5	5	0/0	100							
	4. Free of piping or other structural failures?	5	5	0/0	100	95%						
I. Wads/	1. Free of scour?	NA	NA	NA	NA							
Boulders	2. Footing stable?	NA	NA	NA	NA	NA						
	,											

Footnotes:

The above table should be completed using the visual assessment data form for each project reach/segment

It is recognized that the various metrics within a feature category may not have equal influence on the overall stability of that feature and that this does not incorporate weighting or scoring; however, at this time, EEP requires documentation of the relevant observations for these feature categories.

- $1 \\ \ \, \text{Metrics that are spatial estimates should be entered as: The number of locales over the reach for which the failing condition is observed / followed by the total linear distance (feet) or area for which the failing or unstable condition is observed.}$
- 2 In the case of categorical metrics for which a feature count is involved, this is simply calculated as the number of functional features that are in a state of stability as a percentage of the total. In the case of those metrics based on footage or aerial extent it is that amount in a state of failure or instability expressed as a proportion of the total amount of that feature. The resulting proportion is then subtracted from 1 and then multiplied by 100 to give a percentage that represents the proportion of that feature category in a state of apparent stability.
- 3 The mean of the metrics for a given feature category.
- 4 Was the feature actually present as compared to the As-built or has the feature been completely obscured (aggraded) or removed (degraded).
- Is the Thalweg centering up on the channel in between meander bends?
- 6 Is the meander bend in a state of constriction?

Table B2. Visual Morphological Stability Assessment Purlear Creek Phase I / Project # 294 - Lower Main Reach 6 - 900 Feet Feature Metric (per As-built and (# Stable) Number Total number Total Number / fee % Perform in Feature Perform Category reference baselines) Performing as Intende per As-built in unstable state Stable Condition Mean or Totals A. Riffles 1. Present? NA Armor stable (e.g. no displacement)? Facet grade appears NΑ stable? 4. Minimal evidence of NA 100 nbedding/fining? 4 NA 100 100% 5. Length appropriate? B. Pools 1. Present? (e.g not subje NA 100 to severe aggrad. or migrat.?)4 2. Sufficiently deep (Max NA 100 Pool D:Mean Bkf >1.6?) NA 100 100% 9 9 3. Length appropriate? 1. Upstream of meander NA . Thalweg bend (run/inflection) NΑ (glide/inflection) centering 100% D. Meander 1. Outer bend in state of NA 100 limited/controlled erosion NA 100 2. Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec NA Sufficient floodplain NA 100 100% cess and relief? E. Bed 1. General channel bed NA NA 0/0 100 leneral aggradation areas (bar formation) Channel bed degradation areas of increasing down cutting or head cutting? NA NA 0/0 66 100% Actively eroding, wasting, or slumping bank NA NA 0/0 100% 100% 1. Free of back or arm NΑ 2. Height appropriate? 0 NA 0 Angle and geometry 5 5 NA 100 appear appropriate? 4. Free of piping or other structural failures? 5 NA 100 75% . Free of scour? NA NΑ NA H. Wads 2. Footing stable? NA NA NA NA

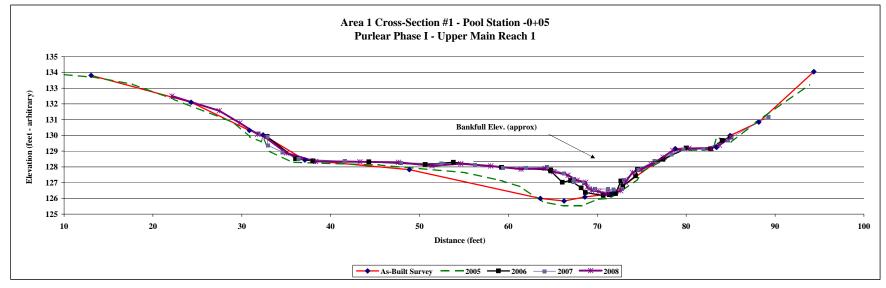
Footnotes:

The above table should be completed using the visual assessment data form for each project reach/segment

It is recognized that the various metrics within a feature category may not have equal influence on the overall stability of that feature and that this does not incorporate weighting or scoring; however, at this time, EEP requires documentation of the relevant observations for these feature categories.

- 1 Metrics that are spatial estimates should be entered as: The number of locales over the reach for which the failing condition is observed / followed by the total linear distance (feet) or area for which the failing or unstable condition is observed.
- In the case of categorical metrics for which a feature count is involved, this is simply calculated as the number of functional features that are in a state of stability as a percentage of the total. In the case of those metrics based on footage or aerial extent it is that amount in a state of failure or instability expressed as a proportion of the total amount of that feature. The resulting proportion is then subtracted from 1 and then multiplied by 100 to give a percentage that represents the proportion of that feature category in a state of apparent stability.
- 3 The mean of the metrics for a given feature category.
- 4 Was the feature actually present as compared to the As-built or has the feature been completely obscured (aggraded) or removed (degraded).
- 5 Is the Thalweg centering up on the channel in between meander bends?
- 6 Is the meander bend in a state of constriction?

Project Name Cross Section Feature


Purlear Phase I 1 - Upper Main Reach 1 Pool 7/14/2008 C George, Z Price

	-				-									
	2004			2005			2006			2007			2008	
	As-Built Survey			MY - 01			MY - 02			MY - 03			MY - 04	
Station	Elev.	Notes	Station	Elev.	Notes	Station	Elev.	Notes		Elevation	Notes	Station	Elevation	
13.04	133.81	XS4	10.03	133.86	X1	32.84		(R1X1LP)	31.87			22.14	132.5	R1XS1
24.29	132.1	XS4	13.58	133.68	X1	36.06		(R1X1)	32.87		R1X1LP07	27.47	131.57	R1XS1
30.85	130.32	XS4	17.69	133.25	X1	37.99		(R1X1)	32.93			29.76	130.79	R1XS1
32.4	130.03	XS4LP	22.36	132.29	X1	44.29		(R1X1)	34.57			31.79	130.07	R1XS1
37.1	128.44	BKF	29.17	130.79	X1	50.64		(R1X1)	36.37		R1X1	32.53	129.93	R1XS1LP08
48.85	127.83	XS4	30.89	129.92	x1lp	53.8		(R1X1)	41.58			35.03	128.88	R1XS1
63.6	126	XS4	32.14	129.6	X1	59.22		(R1X1)	41.58			38.3	128.34	R1XS1
66.26	125.83	XS4	32.4	129.86	X1LP	64.73		(R1X1)	47.92			43.28	128.32	R1XS1
68.6	126.09	XS4	33.04	129.01	X1	64.76		(R1X1)	52.45			47.62	128.29	R1XS1
71.64	126.3	XS4	35.62	128.29	BKF	66.07		(R1X1W)	56.23			51.4	128.07	R1XS1
78.77	129.16	XS4BF	45.44	128.12	X1	67		(R1X1)	59.41			54.63	128.2	R1XS1
83.42	129.24	XS4	55.17	127.63	X1	68.18		(R1X1)	61.96			57.99	128.06	R1XS1
84.94	129.99	XS4LP	59.03	127.14	X1W	68.66		(R1X1)	64.31			61.41	127.86	R1XS1
88.18	130.84	XS4	59.34	127.1	w	70.68		(R1X1)	66.24			64.13	127.91	R1XS1
94.37	134.04	XS4	61.4	126.73	X1	71.35	126.23	(R1X1)	67.28	127.03	R1X1	65.11	127.69	R1XS1
94.37	134.04	XS4	63.89	125.77	X1	72.06	126.3	(R1X1)	67.36		R1X1W	66.72	127.47	R1XS1
			66.2	125.52	X1	72.65		(R1X1W)	68.5			67.72	127.14	R1XS1
			68.27	125.53	X1T	72.87	126.77	(R1X1)	69.19	126.64	R1X1	68.71	127.02	R1XS1W
			70.05	125.95	m	74.3	127.43	(R1X1)	69.71		R1X1	68.86	126.71	R1XS1
			71.36	126	X1	74.53	127.84	(R1X1)	71.21	126.59	R1X1	69.36	126.5	R1XS1
			72.82	126.49	X1	77.41	128.48	(R1X1)	71.83	126.55	R1X1	70.17	126.43	R1XS1
			74.47	127.19	X1W	80	129.2	(R1X1)	72.75	126.6	R1X1	70.87	126.31	R1XS1
			75.06	127.7	X1	82.75	129.14	(R1X1)	72.99	127.18	R1X1	71.24	126.34	R1XS1
			77.76	128.54	X1	84.04	129.67	(R1X1)	74.62	127.82	R1X1	72.63	126.48	R1XS1
			79.49	129.04	X1B	84.94	129.9	(R1X1RP)	76.42	128.37	R1X1	73.18	127.03	R1XS1W
			83.01	129.09	X1			,	78.33	128.78	R1X1	73.94	127.64	R1XS1
			83.42	129.87	x1rp				79.68		R1X1	74.94	127.83	R1XS1
			84.28	129.74	X1RP				81.94			76.08	128.16	R1XS1
			85.08	129.57	X1				84.68			77.4	128.62	R1XS1
			87.8	130.8	X1				85.07		R1X1RP07	78.51	129.04	R1XS1
			93.87	133.23	X1				89.24			80.3	129.18	R1XS1
			l		• • • •							82.82	129.17	R1XS1
												83.75	129.38	R1XS1
												85.03	129.89	R1XS1RP08
												55.55	.20.00	
			ı											

Photo of Area 1 Cross-Section #1 - Looking Downstream

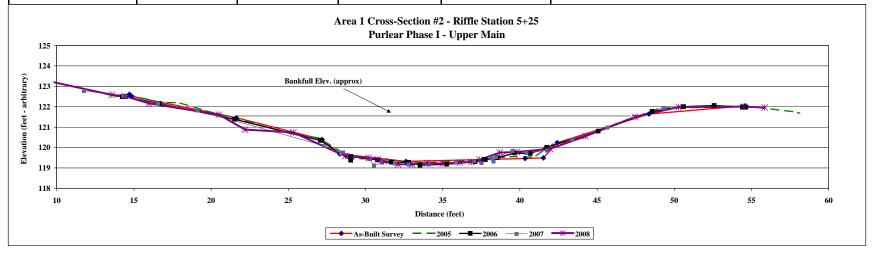
	As-Built	2005	2006	2007	2008
Area	36.7	35.5	14.8	11.06	12.16
Width	29.9	29.6	22.7	22.2	20.3
Mean Depth	1.2	1.2	0.6	0.5	0.6
Max Depth	2.3	2.6	1.9	1.6	1.8

 Project Name
 Purlear Phase I

 Cross Section
 2 - Upper Main Reach 1

 Feature
 Riffle

 Date
 7/14/2008

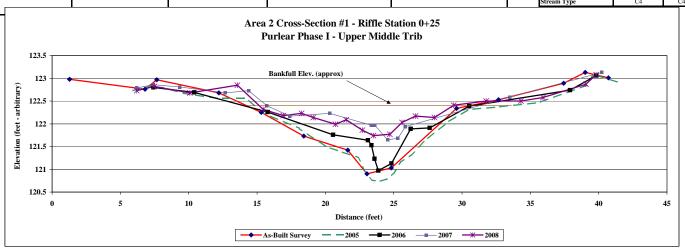

 Crew
 C George, Z Price

1			ı		•	1		T T				
	2004			2005			2006		2007		2008	
As-B	uilt Survey			MY - 01			MY - 02		MY - 03		MY - 04	
Station	Elev.	Notes	Station	Elev.	Notes	Station	Elev. Notes	Station	Elev. Notes	Station	Elev.	Notes
14.71	122.61	XPR	5.91	123.92	X2	14.25	122.49 R1X2LP	11.75	122.79 R1X2	5.92	123.84	R1XS2
14.86	122.51	XSRPL	13.78	122.51	x2lp	14.39	122.5 R1X2LP	14.31	122.53 R1X2LP07	13.58	122.58	R1XS2
21.64	121.46	XSR3	14.67	122.51	X2	14.42	122.5 R1X2LP	14.42	122.5 R1X2LP	14.42	122.52	R1XS2LP08
27.19	120.39	XSR3	14.86	122.55	X2LP	14.42	122.5 R1X2LP	16.57	122.15 R1X2	15.97	122.17	R1XS2
28.33	119.69	XSR3	16.74	122.21	X2	14.43	122.49 R1X2LP	19.12	121.82 R1X2	20.51	121.61	R1XS2
32.62	119.32	XSR3	17.94	122.2	2lp	16.65	122.16 R1X2	27.3	120.09 R1X2	22.2	120.88	R1XS2
40.34	119.46	XSR3	19.54	121.83	X2B	21.53	121.38 R1X2	28.43	119.73 R1X2	25.33	120.74	R1XS2
41.52	119.49	XSR3	21.16	121.5	X2	27.08	120.35 R1X2	28.53	119.76 R1X2	28.69	119.58	R1XS2
42.41	120.24	XSR3	22.93	121.15	X2	29.05	119.37 R1X2W	30.25	119.43 R1X2W	30.22	119.49	R1XS2
48.36	121.64	XSR3	24.92	120.72	X2	29.06	119.55 R1X2	30.55	119.12 R1X2	30.8	119.42	R1XS2W
54.58	122.04	XSR3	27.04	120.46	X2	30.79	119.39 R1X2W	31.06	119.27 R1X2	31.19	119.33	R1XS2
			29.12	119.46	X2	31.67	119.28 R1X2	31.9	119.21 R1X2	32.1	119.18	R1XS2
			30.77	119.44	X2	32.8	119.27 R1X2	32.78	119.18 R1X2	33.03	119.17	R1XS2
			33.71	119.25	X2T	33.53	119.13 R1X2	34.06	119.16 R1X2	34.01	119.24	R1XS2
			36.67	119.35	X2	35.26	119.18 R1X2	35.85	119.27 R1X2	35.01	119.21	R1XS2
			39.37	119.55	X2	37.1	119.3 R1X2	37.02	119.34 R1X2	36.11	119.26	R1XS2
			40.95	119.53	X2	37.72	119.41 R1X2W	37.5	119.25 R1X2	36.86	119.29	R1XS2
			42.08	120.15	X2	37.76	119.4 R1X2W	38.2	119.47 R1X2W	37.39	119.4	R1XS2W
			43.86	120.46	X2	38.53	119.5 R1X2	38.29	119.32 R1X2	38.69	119.75	R1XS2
			46.07	121.11	X2	39.68	119.73 R1X2	38.46	119.54 W	39.8	119.78	R1XS2
			49.05	121.94	X2B	40.67	119.7 R1X2	39.52	119.84 R1X2	41.95	119.93	R1XS2
			53.92	121.99	x2rp	41.74	120.01 R1X2	40.44	119.74 R1X2	44.25	120.55	R1XS2
			54.29	122.03	X2	45.08	120.8 R1X2	41.75	119.85 R1X2	47.46	121.5	R1XS2
			54.6	122.03	X2RP	48.57	121.77 R1X2	43.39	120.4 R1X2	50.28	121.99	R1XS2
			57.68	121.76	X2	50.6	122 R1X2	45.67	120.98 R1X2	54.51	122	R1XS2RP08
			58.12	121.68	2rp	52.58	122.06 R1X2	47.42	121.51 R1X2	55.85	121.96	R1XS2
						54.41	121.99 R1X2RP	49.31	121.95 R1X2			
						54.47	121.99 R1X2RP	51.96	122.01 R1X2			
						54.48	121.97 R1X2RP	53.7	122.06 TOB			
						54.53	121.98 R1X2RP	54.43	122 R1X2RP07			
						54.64	121.98 R1X2RP	54.47	121.99 R1X2RP			
1								I				
			I			I		I				

Photo of Area 1 Cross-Section #2 - Looking Downstream

	As-Built	2005	2006	2007	2008
Area	39.6	39.6	41.0	41.32	41.23
Width	26.7	26.4	31.4	28.3	27.0
Mean Depth	1.5	1.5	1.3	1.5	1.5
Max Depth	2.3	2.3	2.5	2.5	2.4
w/d ratio	18.1	17.6	24.1	19.4	17.7
FPW	53	53	53	53	53
ER (greater than)	2.0	2.0	1.7	1.9	2.0
Stream Type	C4	C4	C4	C4	C4

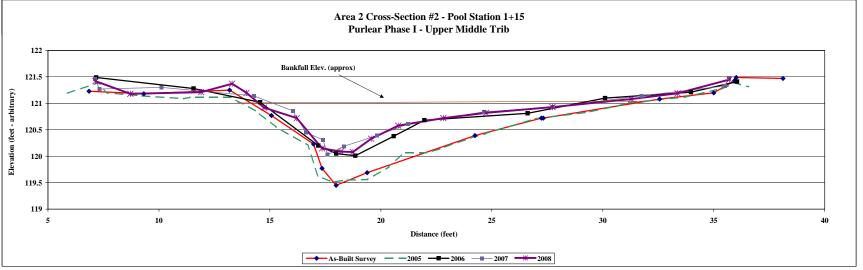
Project Name Cross Section Feature Date Purlear Phase I


1 - Upper Middle Trib Reach 2
Riffle
7/15/2008
C George 7 Price

Crew		C George, Z	Price									
		2004 s-Built Survey			2005 MY - 01			2006 MY - 02		2007 MY - 03		2008 MY - 04
	Station	Elev.	Notes	Station	Elev.	Notes	Station	Elev. Notes	Station	Elev. Notes	Station	Elev. Notes
	1.28	122.98	X1	5.93	122.73	X1	7.41	122.8 (R1X1LP)	6.18	122.79 (2007-R2X1)	6.19	122.73 R2X\$1
	6.8	122.76	X1TPL	7.15	122.83	X1LP	10.4	122.69 (R1X1)	7.4	122.86 (2007-R2X1LP07)	7.47	122.82 R2XS1LP08
	7.66	122.97	X1	7.25	122.82	X1LP	15.77	122.26 (R1X1)	9.34	122.81 (2007-R2X1)	10.08	122.68 R2XS1
	12.2	122.68	X1	7.36	122.82	x1lp	20.56	121.76 (R1X1)	12.68	122.68 (2007-R2X1)	13.56	122.85 R2XS1
	15.3	122.25	XB	8.16	122.79	X1	23.12	121.64 (R1X1)	14.38	122.73 (2007-R2X1)	15.44	122.32 R2XS1
	18.42	121.73	X1	9.64	122.67	X1	23.37	121.53 (R1X1W)	15.72	122.4 (2007-R2X1)	16.92	122.18 R2XS1
	21.64	121.42	X1	12.08	122.56	X1	23.6	121.23 (R1X1)	17.39	122.17 (2007-R2X1)	18.25	122.23 R2XS1
	23.04	120.9	XT	14.22	122.56	X1	23.88	120.97 (R1X1)	20.32	122.23 (2007-R2X1)	19.11	122.14 R2XS1
	24.82	121.03	W	15.49	122.23	X1	24.84	121.13 (R1X1)	23.35	121.97 (2007-R2X1)	20.74	121.99 R2XS1
	29.6	122.34	XB	18.1	121.9	X1	26.24	121.89 (R1X1)	23.62	121.97 (2007-R2X1W)	21.52	122.09 R2XS1
	32.67	122.53	X1	20.05	121.5	X1	27.64	121.91 (R1X1)	24.54	121.65 (2007-R2X1)	22.7	121.86 R2XS1
	37.44	122.89	X1	21.24	121.38	X1	30.53	122.39 (R1X1)	25.31	121.68 (2007-R2X1)	23.51	121.74 R2XS1
	39.02	123.13	X1TPR	22.4	121.26	X1	37.9	122.74 (R1X1)	25.85	121.94 (2007-R2X1W)	24.72	121.77 R2XS1
	40.72	123.01	X1	23	120.9	X1	39.83	123.06 (R1X1RP)	33.5	122.59 (2007-R2X1)	25.61	122.03 R2XS1
				23.43	120.76	X1			40.24	123.13 (2007-R2X1RP07)	26.59	122.17 R2XS1
				24	120.74	X1					27.99	122.14 R2XS1
				24.52	120.79	X1					29.39	122.41 R2XS1
				24.99	120.92	X1					31.77	122.5 R2XS1
				25.54	121.16	X1					34.31	122.5 R2X\$1
				26.28	121.32	X1					35.93	122.58 R2XS1
				27.34	121.64	X1					39.06	122.87 R2XS1
				28.9	122.03	X1					39.81	123.08 R2X\$1RP08
				30.44	122.31	X1						
				32.6	122.37	X1						
				35.69	122.47	X1						
				39.11	122.85	X1						
				39.6	123.07	X1rp						
				39.76	123.05	x1rp	I				I	
				39.79	123.07	X1RP						
				41.36	122.92	X1	I				I	
							I				I	
							I				I	

Photo of Area 2 Cross-Section #1 - Looking Downstream

	As-Built	2005	2006	2007	2008
Area	11.9	12.4	8.6	3.23	4.52
Width	17.4	16.2	17.3	10.1	14.0
Mean Depth	0.7	0.8	0.5	0.3	0.3
Max Depth	1.5	1.7	1.4	0.8	0.7
w/d ratio	25.5	21.1	34.6	31.8	43.1
FPW	40	40	40	40	40
ER (greater than)	2.3	2.5	2.3	3.9	2.9
Stream Type	C4	C4	C4	C4	C4

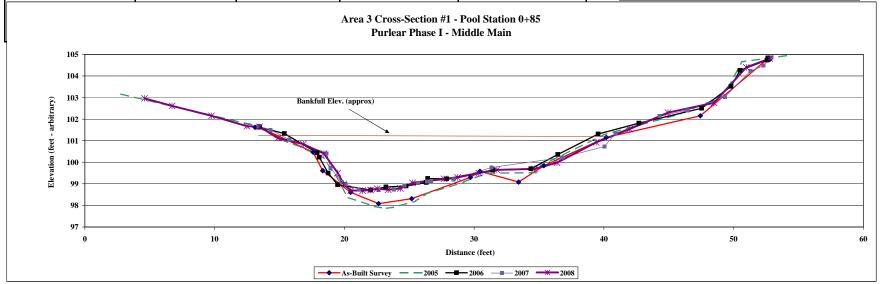

Project Name Cross Section Feature Date Crew Purlear Phase I 2 - Upper Middle Trib Reach 2 Pool 7/15/2008 C George, Z Price

As-	2004 Built Survey			2005 MY - 01			2006 MY - 02		2007 MY - 03		2008 MY - 04
Station	Elev.	Notes	Station	Elev.	Notes	Station	Elev. Notes	Station	Elev. Notes	Station	Elev. Notes
6.85	121.23	X2TPL	5.88	121.19	X2	7.17	121.49 (R1X2LP)	7.13	121.46 R2X2LP07	7.14	121.42 R2XS2LP08
9.32	121.18	X2	7.26	121.39	X2LP	11.56	121.28 (R1X2)	7.32	121.27 R2X2	8.71	121.18 R2XS2
13.18	121.25	X2	7.66	121.2	X2	14.56	121.02 (R1X2)	10.12	121.3 R2X2	11.9	121.21 R2X\$2
15.07	120.77	XB	9.24	121.14	X2	17.18	120.2 (R1X2)	14.27	121.14 R2X2	13.3	121.37 R2XS2
16.97	120.23	X2	11.11	121.09	В	17.99	120.05 (R1X2)	16.03	120.86 R2X2	13.95	121.2 R2XS2
17.35	119.77	X2	11.4	121.11	X2	18.85	120.01 (R1X2)	16.63	120.45 R2X2	14.73	120.92 R2XS2
17.98	119.45	XT	13.25	121.11	X2	20.58	120.38 (R1X2)	17.39	120.31 R2X2W	16.21	120.72 R2XS2
19.38	119.69	XW	14.39	120.85	X2	21.96	120.68 (R1X2)	17.6	120.03 R2X2	17.35	120.15 R2XS2
24.24	120.39	X2	15.29	120.55	X2	26.61	120.81 (R1X2)	18.34	120.19 R2X2	18.2	120.09 R2XS2
27.23	120.72	XB	16.71	120.21	X2	30.1	121.1 (R1X2)	19.82	120.39 R2X2W	18.74	120.08 R2XS2
27.32	120.72	7	17.16	119.63	X2	33.97	121.21 (R1X2)	21.23	120.61 R2X2	19.56	120.33 R2XS2
32.56	121.08	X2	17.82	119.51	X2	36.05	121.41 (R1X2RP)	24.64	120.84 R2X2	20.78	120.58 R2XS2
35	121.2	X2	18.45	119.55	X2			27.76	120.93 R2X2	22.81	120.72 R2XS2
35.94	121.43	X2RP	19.4	119.56	X2			31.73	121.14 R2X2	24.74	120.82 R2XS2
36.01	121.49	X2RT	20.36	119.8	X2			35.51	121.33 R2X2	27.73	120.93 R2XS2
38.12	121.47	X2	21.01	120.06	X2			35.69	121.48 R2X2RP07	31.28	121.08 R2XS2
			22.04	120.06	X2					33.37	121.19 R2XS2
			22.66	120.14	X2					35.7	121.45 R2XS2RP
			23.93	120.33	X2						
			24.73	120.43	X2						
			26.95	120.71	X2						
			29.28	120.83	X2						
			30.74	120.96	X2						
			31.17	121.01	В						
			32.52	121.07	X2						
			33.74	121.12	X2						
			35.11	121.26	X2						
			35.31	121.26	X2					I	
			35.94	121.39	X2RP					I	
			36.57	121.31	X2						

Photo of Area 2 Cross-Section #2 - Looking Downstream

	As-Built	2005	2006	2007	2008
Area	12.8	13.4	7.6	6.17	6.67
Width	19.4	19.3	18.5	17.5	17.3
Mean Depth	0.7	0.7	0.4	0.4	0.4
Max Depth	1.6	1.6	1.1	1.1	1.0

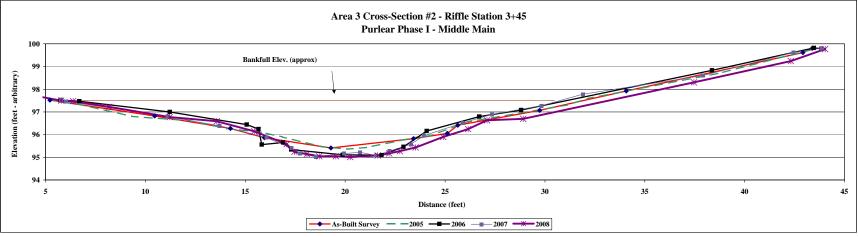
Project Name Cross Section Purlear Phase I 1 - Middle Main Reach 3


Pool 7/15/2008 C George, Z Price Feature

	2004			2005			2006		2007		2008	
	uilt Survey			MY - 01			MY - 02		MY - 03		MY - 04	
Station	Elev.	Notes	Station	Elev.	Notes	Station	Elev. Notes	Station	Elev. Notes	Station	Elev.	Notes
13.12	101.62	X2P	2.79	103.16	fl	13.42	101.65 (R3X2LP)	13.37	101.66 (R3XS1LP07)	4.6	102.96	R3XS1
13.37	101.65	X2PLP	13.37	101.66	x2lp	13.47	101.63 (R3X1LP)	14.32	101.5 (R3XS1)	6.72	102.61	R3XS1
17.58	100.47	X2P	14.78	101.12	bf	15.37	101.33 (R3X1)	15.76	101.05 (R3XS1)	9.77	102.15	R3XS1
18.33	99.61	X2P	16.79	100.67	x2	17.9	100.44 (R3X1)	18.63	100.42 (R3XS1)	12.49	101.67	R3XS1
18.34	99.61	X2P	18.36	100.21	x2	18.07	100.23 (R3X1)	18.94	99.73 (R3XS1)	13.47	101.64	R3XS1LP08
20.48	98.61	X2P	19.3	99.39	x2	18.76	99.5 (R3X1)	19.79	99.09 (R3XS1W)	14.88	101.12	R3XS1
22.64	98.08	X2P	20.27	98.37	x2	19.48	98.96 (R3X1W)	20.08	99 (R3XS1)	16.84	100.84	R3XS1
25.19	98.31	X2P	22.33	97.95	x2	22.03	98.71 (R3X1)	21.13	98.74 (R3XS1)	18.42	100.4	R3XS1
29.72	99.3	X2P	23.19	97.86	m	23.2	98.85 (R3X1)	22.62	98.72 (R3XS1)	19.5	99.5	R3XS1
30.44	99.58	WS	23.77	97.91	x2	24.76	98.9 (R3X1)	23.82	98.74 (R3XS1)	19.95	98.99	R3XS1W
33.43	99.08	X2P	25.49	98.19	x2	26.31	99.06 (R3X1W)	24.62	98.92 (R3XS1)	20.5	98.69	R3XS1
35.38	99.84	X2P	26.28	98.53	x2	26.43	99.25 (R3X1)	25.66	99.04 (R3XS1)	21.4	98.68	R3XS1
40.19	101.15	X2P	29.21	99.08	x2	27.88	99.23 (R3X1)	26.36	99.12 (R3XS1)	22.02	98.71	R3XS1
47.43	102.15	X2P	30.95	99.49	x2	31.46	99.64 (R3X1)	26.68	99.13 (R3XS1)	22.53	98.78	R3XS1
52.7	104.83	X2PRP	34.79	99.52	x2	34.38	99.7 (R3X1)	28.4	99.21 (R3XS1)	23.38	98.73	R3XS1
52.79	104.77	X2P	35.13	99.83	x2	36.45	100.36 (R3X1)	31.35	99.76 (R3XS1)	24.32	98.79	R3XS1
			39.94	101.26	x2	39.55	101.31 (R3X1)	36.78	100.22 (R3XS1)	25.26	99.05	R3XS1
			45.88	102.24	x2	42.7	101.81 (R3X1)	40.04	100.73 (R3XS1)	27.68	99.23	R3XS1
			49.19	103.07	x2	47.53	102.5 (R3X1)	40.9	101.34 (R3XS1)	28.73	99.3	R3XS1
			50.66	104.66	x2	49.8	103.52 (R3X1)	44.29	102.14 (R3XS1)	30.36	99.5	R3XS1
			52.49	104.81	x2rp	50.49	104.26 (R3X1)	46.43	102.41 (R3XS1)	31.75	99.65	R3XS1
			54.45	104.97	fl	52.58	104.73 (R3X1)	49.31	103.02 (R3XS1)	34.66	99.69	R3XS1
						52.64	104.82 (R3X2RP)	51.29	104.22 (R3XS1)	36.39	99.98	R3XS1
						52.65	104.83 (R3X1RP)	52.3	104.48 (R3XS1)	39.41	100.92	R3XS1
						52.73	104.79 (R3X1RP)	52.9	104.85 (R3XS1RP07)	41.99	101.54	R3XS1
										44.94	102.3	R3XS1
										48.48	102.75	R3XS1
						I				50.98	104.4	R3XS1
										52.79	104.81	R3XS1RP08

Photo of Area 3 Cross-Section #1 - Looking Downstream

	As-Built	2005	2006	2007	2008
Area	43.7	44.8	37.0	36.90	37.75
Width	22.6	26.2	24.2	25.1	25.9
Mean Depth	1.9	1.7	1.5	1.5	1.5
Max Depth	3.1	3.3	2.5	2.5	2.5

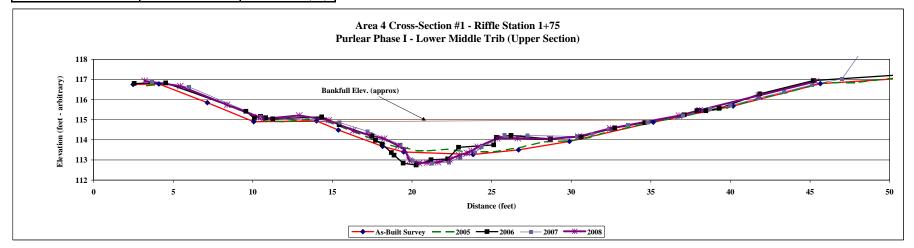

Project Name Cross Section Feature Date Crew Purlear Phase I 2 - Middle Main Reach 3 Riffle 7/15/2008 C George, Z Price

w	C George, Z	Price	ı			Г				1		
	2004			2005			2006		2007		2008	
As-l	Built Survey			MY - 01			MY - 02		MY - 03		MY - 04	
Station	Elev.	Notes	Station	Elev.	Notes	Station	Elev. Notes	Station	Elev. Notes	Station	Elev.	Notes
5.22	97.52	X1L	5.22	97.54	x1lp	5.75	97.52 (R3X2LP)	5.76	97.52 R3X2LP	2.99	97.95	R3XS2
10.46	96.82	X1	6.89	97.29	x1	5.76	97.52 (R3X2LP06)	6.02	97.47 R3XS2LP07	5.78	97.5	R3XS2LP
14.25	96.27	X1	9.33	96.8	x1	6.69	97.47 (R3X2)	11.1	96.79 R3XS2	6.38	97.47	R3XS2
15.96	95.86	X1LEW	12.24	96.61	x1	11.22	97 (R3X2)	13.7	96.39 R3XS2	8.18	97.22	R3XS2
19.28	95.41	X1	14.08	96.26	x1	15.07	96.44 (R3X2)	16.05	95.87 R3XS2	11.22	96.77	R3XS2
23.42	95.82	X1REW	15.82	96.1	x1	15.66	96.24 (R3X2)	17.3	95.41 R3XS2W	13.57	96.59	R3XS2
25.12	96.05	X1	16.86	95.9	x1	15.82	95.56 (R3X2)	17.74	95.16 R3X2	15.45	96.14	R3XS2
25.64	96.41	X1	18.8	95.47	x1	16.9	95.65 (R3X2)	18.52	95.02 R3XS2	17.07	95.58	R3XS2
29.74	97.07	X1	20.13	95.36	x1	17.3	95.34 (R3X2W)	19.94	95.16 R3XS2	17.46	95.24	R3XS2V
34.07	97.92	X1	21.07	95.43	x1	19.88	95.11 (R3X2)	20.74	95.22 R3XS2	18.08	95.14	R3XS2
42.92	99.61	X1	23.48	95.87	x1	21.82	95.09 (R3X2)	21.54	95.08 R3XS2	18.7	95.04	R3XS2
43.39	99.8	X1R	24.33	95.96	x1	22.92	95.46 (R3X2W)	22.21	95.27 R3XS2	19.53	95.04	R3XS2
			25.99	96.53	x1	24.08	96.16 (R3X2)	23.29	95.57 R3XS2W	20.25	95.01	R3XS2
			31.13	97.31	x1	26.71	96.79 (R3X2)	23.95	95.95 R3XS2	21.63	95.08	R3XS2
			32.16	97.59	x1	28.81	97.08 (R3X2)	25.89	96.52 R3XS2	22.2	95.17	R3XS2
			38.87	98.73	x1	38.37	98.83 (R3X2)	27.36	96.89 R3XS2	22.74	95.27	R3XS2
			43.55	99.79	x1rp	43.46	99.82 (R3X2RP)	29.83	97.27 R3XS2	23.53	95.43	R3XS2
						43.85	99.79 (R3X2RP06)	31.9	97.78 R3XS2	24.91	95.9	R3XS2
								37.9	98.6 R3XS2	26.16	96.24	R3XS2
								42.45	99.62 R3XS2	27.1	96.63	R3XS2
								43.84	99.8 R3XS2RP07	28.91	96.69	R3XS2
								43.85	99.79 R3X2RP	37.46	98.3	R3XS2
								43.99	100.02 R3XS2	42.32	99.24	R3XS2
										44.03	99.77	R3XS2RI
						1				l		

Photo of Area 3 Cross-Section #2 - Looking Downstream

	As-Built	2005	2006	2007	2008
Area	28.3	28.1	27.2	29.41	30.62
Width	24.5	24.2	25.1	24.1	24.1
Mean Depth	1.2	1.2	1.1	1.2	1.3
Max Depth	2.1	2.1	2.4	2.5	2.5
w/d ratio	21.3	20.9	23.0	19.7	19.0
FPW	60	60	60	60	60
ER (greater than)	2.4	2.5	2.4	2.5	2.5
Stream Type	C4	C4	C4	C4	C4

Purlear Phase I 1 - Lower Middle Trib (Upper Section) Reach 4 Feature

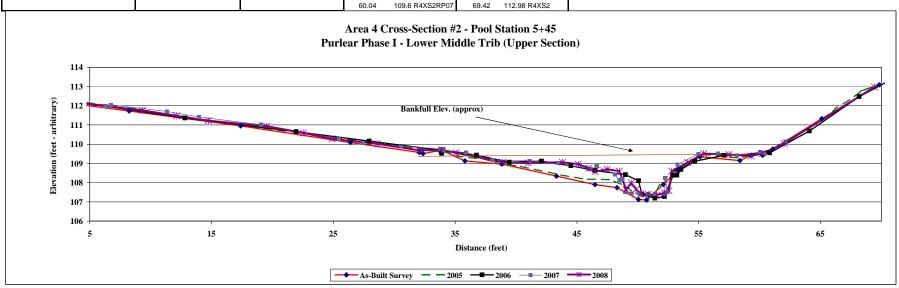

Riffle 7/16/2008 C George, Z Price

	2004			2005			2006		2007		2008	
As-B	uilt Survey			MY - 01			MY - 02		MY - 03		MY - 04	
Station	Elev.	Notes	Station	Elev.	Notes	Station	Elev. Notes	Station	Elev. Notes	Station	Elev.	Notes
2.48	116.75	X1	3.34	116.69	x1	2.55	116.8 (x1r4)	3.68	116.89 (2007-R4XS1)	3.21	116.93	R4XS1
4.1	116.78	X1	4.85	116.79	x1	4.53	116.82 (x1r4)	5.98	116.63 (2007-R4XS1)	5.45	116.67	R4XS1
7.15	115.85	X1	7.96	115.84	x1	9.57	115.42 (x1r4)	10.49	115.13 (2007-R4XS1LP		115.74	R4XS1
10.06	114.9	X1	10.49	115.1	x1lp	10.1	115.07 (x1r4)	15.43	114.87 (2007-R4XS1)	10.35	115.13	R4XS1LP08
14	114.94	X1B	10.72	114.95	x1	10.49	115.16 (r4x1lp)	17.21	114.42 (2007-R4XS1)	10.67	115.04	R4XS1
15.38	114.49	X1	11.97	114.9	x1	10.49	115.15 (x1r4lp)	19.29	113.76 (2007-R4XS1W)	12.91	115.21	R4XS1
18.15	113.68	X1EW	13.34	115.02	x1	10.8	115.1 (r4x1lp)	20.03	112.97 (2007-R4XS1)	14.78	114.97	R4XS1
19.48	113.4	X1	14.22	115.11	x1	11.26	115.04 (x1r4)	21.26	112.83 (2007-R4XS1)	16.31	114.46	R4XS1
23.84	113.27	X1	14.65	114.93	bf	14.33	115.14 (x1r4)	22.33	112.89 (2007-R4XS1)	17.32	114.23	R4XS1
26.69	113.5	X1EW	18.05	113.87	x1	15.43	114.75 (x1r4)	23.01	113.12 (2007-R4XS1)	18.25	114.06	R4XS1
29.89	113.92	X1	18.98	113.65	x1	17.49	114.19 (x1r4)	23.96	113.37 (2007-R4XS1)	19.15	113.7	R4XS1
35.16	114.88	X1	19.29	113.66	w	17.71	113.97 (x1r4)	24.37	113.64 (2007-R4XS1W)	19.56	113.5	R4XS1
40.17	115.68	X1RP	20.35	113.45	x1	18.13	113.79 (x1r4)	25.82	114.23 (2007-R4XS1)	19.84	112.97	R4XS1
45.65	116.79	X1	20.83	113.45	x1	18.7	113.37 (x1r4)	27.24	114.22 (2007-R4XS1)	20.44	112.84	R4XS1
50.51	117.04	X1	22.2	113.53	x1	18.87	113.24 (x1r4)	30.35	114.17 (2007-R4XS1)	20.94	112.87	R4XS1
			23.43	113.41	x1	19.45	112.84 (x1r4)	31.33	114.28 (2007-R4XS1)	21.63	112.89	R4XS1
			24.42	113.41	x1	20.26	112.75 (x1r4)	32.38	114.54 (2007-R4XS1)	22.34	113.03	R4XS1
			25.14	113.41	x1	21.2	113.01 (x1r4)	33.57	114.75 (2007-R4XS1)	22.96	113.23	R4XS1
			25.96	113.51	x1	22.24	113.05 (x1r4)	34.77	114.87 (2007-R4XS1)	23.45	113.35	R4XS1W
			27.03	113.66	x1	22.92	113.63 (x1r4)	37.03	115.2 (2007-R4XS1)	23.75	113.45	R4XS1
			28.16	113.89	x1	25.14	113.75 (x1r4)	38.7	115.53 (2007-R4XS1RP		113.65	R4XS1
			30.04	113.96	x1	25.31	114.12 (x1r4)	40	115.7 (2007-R4XS1)	25.35	114.08	R4XS1
			31.19	114.12	x1	26.22	114.22 (x1r4)	41.78	116.08 (2007-R4XS1)	26.64	114.08	R4XS1
			31.8	114.28	bf	28.69	114.04 (x1r4)	43.36	116.39 (2007-R4XS1)	28.65	114.05	R4XS1
			32.59	114.46	x1	30.63	114.15 (x1r4)	45.11	116.73 (2007-R4XS1)	30.45	114.16	R4XS1
			33.97	114.67	x1	32.73	114.59 (x1r4)	47.02	117.03 (2007-R4XS1)	32.45	114.57	R4XS1
			35.63	114.96	x1	34.62	114.85 (x1r4)	50.43	120.87 (2007-R4XS1)	36.77	115.2	R4XS1
			37.06	115.14	x1	37.11	115.24 (x1r4)			38.07	115.47	R4XS1RP08
			38.11	115.39	x1rp	37.9	115.45 (x1r4rp)			41.79	116.2	R4XS1
			38.94	115.47	x1	38.02	115.46 (r4x1rp)			45.38	116.9	R4XS1
			39.77	115.57	x1	38.46	115.44 (r4x1rp)					
			41.63	116.03	x1	39.3	115.56 (x1r4)					
						41.85	116.28 (x1r4)					
						45.21	116.94 (x1r4)					
						50.52	117.22 (x1r4)					

Photo of Area 4 Cross-Section #1 - Looking Downstream

	As-Built	2005	2006	2007	2008
Area	21.8	19.1	18.8	17.49	17.81
Width	25.1	25.1	22.3	19.3	19.5
Mean Depth	0.9	0.8	0.8	0.9	0.9
Max Depth	1.6	1.5	2.2	2.1	2.1
w/d ratio	28.9	32.9	26.5	21.4	21.4
FPW	50	50	50	50	50
ER (greater than)	2.0	2.0	2.2	2.6	2.6
Stream Type	C4	C4	C4	C4	C4

Purlear Phase I 2 - Lower Middle Trib (Upper Section) Reach 4

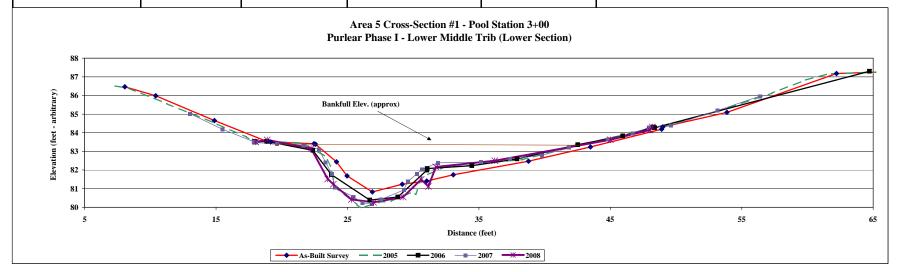

Project Name Cross Section Feature Date Crew Pool 7/16/2008 C George, Z Price

Notes Station Elev Station Elev Notes Station Elev Station Elev Notes Station Elev Station Elev Notes Station Elev Station Elev Notes Station Elev S	Crew	C George,	Z Price								
3.21 112.14 X2 3.7 112.27 X2 3.86 112.21 (x2) 3.2 112.36 R4XS2 4.68 112.11 R4XS2 17.39 110.95 X2 6.85 111.97 X2 21.94 110.85 (x2) 6.72 112.05 R4XS2 12.13 111.48 R4XS2 26.4 110.09 X2 8.77 111.85 X2 27.93 110.16 (x2) 6.72 112.05 R4XS2 12.13 111.48 R4XS2 26.4 110.09 X2 8.77 111.85 X2 27.93 110.16 (x2) 111.33 111.7 R4XS2 19.52 14.73 111.23 R4XS2 32.06 109.57 VP 10.13 111.16 1 x2 33.88 109.68 (R4X2LP) 13.95 111.42 R4XS2 19.52 110.94 R4XS2 32.36 109.51 X2 33.72 109.61 p. 33.89 109.52 (x2) 19.04 111.02 R4XS2 22.52 110.95 R4XS2 33.88 109.69 X2LP 33.88 109.68 X2 p. 33.99 109.56 (X2)p. 35.81 109.13 X2 35.27 109.36 x2 34.01 109.69 (R4X2LP) 25.44 110.29 R4XS2 24.89 110.28 R4XS2 44.32 109.13 X2 35.27 109.36 x2 34.01 109.69 (R4X2LP) 30.56 (109.94 R4XS2 32.07 109.68 R4XS2 44.32 108.34 X2 38.6 108.99 x2 39.44 109.06 (x2) 33.84 109.68 X2 p. 37.48 109.21 bi 36.75 109.43 (x2) 30.56 109.9 R4XS2 32.07 109.68 R4XS2 44.84 107.74 X2 43.55 108.85 x2 42.08 109.12 X2 42.08 109.12 X2 40.03 109.69 R4XS2 50.05 107.12 T 45.56 108.19 x2 46.47 108.63 (x2) 35.89 109.56 R4XS2 38.89 109.68 R4XS2 50.05 107.12 T 45.56 108.19 x2 46.47 108.63 (x2) 35.89 109.56 R4XS2 40.99 109.68 R4XS2 50.05 107.12 T 45.56 108.19 x2 46.47 108.63 (x2) 36.97 109.18 R4XS2 43.8 109.06 R4XS2 50.05 107.12 T 47.76 108.16 x2 48.98 108.34 (x2) 36.87 109.18 R4XS2 43.8 109.06 R4XS2 50.51 109.56 X2 49.31 107.66 x2 50.33 107.39 (x2) 46.03 109.37 R4XS2 45.1 108.96 R4XS2 50.55 108.65 X2 49.31 107.66 x2 50.39 109.55 R4XS2 50.55 108.65 X2 49.31 107.66 x2 50.39 109.55 R4XS2 50.55 108.66 X2 49.31 107.66 x2 50.39 109.55 R4XS2 50.35 109.37 R4XS2 50.65 107.47 R4XS2 50.25 109.48	As-l										
8.23											
17.39											
26.4 110.09 X2 8.77 111.85 x2 27.93 110.16 (x2) 11.33 111.7 R4XS2 14.73 111.23 R4XS2 32.06 109.57 VP 10.13 111.61 x2 33.88 109.68 (R4x2LP) 13.95 111.42 R4XS2 19.52 110.94 R4XS2 33.86 109.51 X2 33.72 109.61 lp 33.89 109.52 (x2) 19.04 111.02 R4XS2 22.52 110.59 R4XS2 33.88 109.69 X2LP 33.88 109.68 x2lp 33.98 109.68 (x2lp) 25.44 110.29 R4XS2 24.89 110.28 R4XS2 38.85 108.96 X2 37.48 109.21 bf 36.75 109.43 (x2) 30.56 109.9 R4XS2 24.89 110.28 R4XS2 43.32 188.34 X2 36.6 108.99 x2 33.44 109.06 (x2) 33.84 109.76 R4XS2LPO7 33.86 109.7 R4XS2LPO 46.49 107.9 X2EW 40.37 108.85 x2 42.08 109.12 (x2) 30.56 109.9 R4XS2 32.07 109.68 R4XS2 44.82 107.74 X2 43.55 108.41 x2 44.5 108.88 (x2) 35.89 109.56 R4XS2 38.89 109.06 R4XS2 50.71 107.1 X2 47.76 108.16 x2 48.98 108.41 (x2w) 41.08 109.14 R4XS2 49.99 109.02 R4XS2 55.1 107.91 X2EW 48.93 107.83 x2 50.06 108.10 (x2) 43.03 109.30 R4XS2 43.8 109.06 R4XS2 55.25 108.65 X2 49.31 107.66 x2 50.33 107.39 (x2) 46.07 109.38 R4XS2 45.9 100.76 R4XS2 55.25 108.65 X2 49.31 107.66 x2 50.33 107.39 (x2) 46.07 109.87 R4XS2 44.89 109.42 X2RP 50.91 107.44 x2 50.42 50.42 107.25 x2 50.96 108.10 (x2) 46.67 108.87 R4XS2 46.88 108.57 R4XS2 59.28 109.42 X2RP 50.91 107.18 x2 50.84 109.14 (x2) 46.67 108.68 (x2) 46.67 108.67 R4XS2 48.98 108.41 (x2) 46.67 108.67 R4XS2 48.98 108.47 (x2) 46.67 108.67 R4XS2 48.98 108.47 (x2) 46.67 108.67 R4XS2 48.98 108.57 R4XS2 59.28 109.42 X2RP 50.91 107.18 x2 50.84 109.55 (x2) 50.91 107.18 x2 50.42 107.25 x2 50.91 107.19 (x2) 46.67 108.67 R4XS2 48.88 108.67 R4XS2 48.98 108.47 R4XS2 48.94 107.47 R4XS2 50.42 107.25 x2 50.91 107.25 x2 50.49 107.27 (x2) 46.67 108.67 R4XS2 48.99 108.77 R4XS2 50.66 109.51 R4XS2 50.60 109.55 R4XS2 50.60 109.55 R4XS2 50.60 109.51 R4XS2 50.60 109.48 R4XS2 50.60 109.51 R4XS2 50.60 109.55 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.60 109.51 R4XS2 50.6											
32.06 109.57 VP 10.13 111.61 x2 33.88 109.68 (R4x2LP) 13.95 111.42 R4XS2 2 19.52 110.94 R4XS2 32.36 109.51 X2 33.72 109.61 lp 33.89 109.52 (x2) 19.04 111.02 R4XS2 22.52 110.59 R4XS2 33.88 109.69 X2LP 33.88 109.68 x2 34.01 109.69 (R4x2lp) 25.44 110.29 R4XS2 24.89 110.28 R4XS2 38.85 109.68 X2 37.48 109.21 bf 36.75 109.43 (x2) 36.56 109.9 R4XS2 28.59 110.02 R4XS2 48.32 108.34 X2 38.6 108.99 x2 39.44 109.06 (x2) 33.84 109.76 R4XS2LPO 33.86 109.7 R4XS2LPO 40.37 108.85 x2 42.08 109.12 (x2) 34.01 109.69 R4XS2 35.67 109.68 R4XS2 50.05 107.12 T 45.56 108.19 x2 46.47 108.63 (x2) 35.57 109.18 R4XS2 43.8 109.9 R4XS2 50.05 107.12 T 45.56 108.19 x2 46.47 108.63 (x2) 36.57 109.18 R4XS2 43.8 109.06 R4XS2 55.1 109.9 R4XS2 49.91 107.66 x2 48.98 109.42 (x2) 40.91 109.02 R4XS2 50.05 109.68 R4XS2 65.11 109.35 X2BF 49.91 107.44 x2 51.4 107.19 (x2) 46.6 108.87 R4XS2 46.48 109.93 R4XS2 65.6 109.9 R4XS2 49.94 107.18 x2 52.88 109.94 2 X2RP 50.91 107.18 x2 52.88 109.15 X2 51.81 109.94 X2RMS 50.94 109.02 R4XS2 55.09 109.92 F4XS2 55.09 109.92 F4XS2 55.09 109.93 bf 68.85 (x2) 57.09 109.94 (x2) 59.96 109.93 bf 68.85 (x2) 59.96 109.58 (x2) 59											
32.36 109.51 X2 33.72 109.61 lp 33.89 109.52 (x2) 19.04 111.02 R4XS2 22.52 110.59 R4XS2 33.88 109.68 x2 37.48 109.69 (x2 35.27 109.36 x2 36.75 109.43 (x2) 27.41 110.06 R4XS2 28.59 110.02 R4XS2 38.65 108.96 X2 37.48 109.21 bf 36.75 109.43 (x2) 30.56 109.9 R4XS2 28.59 110.02 R4XS2 43.32 108.34 X2 38.6 108.99 x2 39.44 109.06 (x2) 33.84 109.76 R4XS2LPO 33.86 109.79 R4XS2LPO 33.86 109.79 R4XS2LPO 33.86 109.79 R4XS2LPO 33.86 109.79 R4XS2LPO 33.86 109.79 R4XS2LPO 33.86 109.79 R4XS2LPO 33.86 109.79 R4XS2LPO 33.86 109.79 R4XS2LPO 33.86 109.79 R4XS2LPO 33.86 109.79 R4XS2LPO 33.86 109.79 R4XS2LPO 35.08 109.55 R4XS2 35.70 107.12 T 45.56 108.19 x2 46.47 108.68 (x2) 38.07 109.18 R4XS2 40.99 109.06 R4XS2 50.71 107.11 X2 47.76 108.16 x2 48.98 108.41 (x2) 41.08 109.14 R4XS2 43.8 109.86 R4XS2 53.25 108.65 X2 49.31 107.66 x2 50.33 107.39 (x2) 46.03 108.72 R4XS2 45.91 108.96 R4XS2 59.26 109.15 X2 50.42 107.25 x2 52.19 107.27 (x2) 46.66 108.87 R4XS2 45.91 108.67 R4XS2 59.28 109.42 X2RP 50.91 107.18 x2 52.88 108.38 (x2) 48.71 108.42 R4XS2 48.88 109.68 R4XS2 59.28 109.42 X2RP 50.91 107.87 x2 53.54 108.39 (x2) 48.71 108.48 R4XS2 49.85 107.43 x2 51.81 107.87 x2 53.54 108.96 R4XS2 50.06 108.11 (x2) 48.71 109.35 X2BF 49.91 107.74 x2 52.88 108.38 (x2) 48.47 108.18 R4XS2 45.91 108.68 R4XS2 59.28 109.42 X2RP 50.91 107.18 x2 52.88 108.38 (x2) 48.47 108.18 R4XS2 45.91 108.68 R4XS2 59.28 109.42 X2RP 50.91 107.87 x2 53.54 108.39 (x2) 48.47 108.14 R4XS2 50.64 107.95 R4XS2 50.66 109.51 (r4x2rp) 50.12 107.47 R4XS2 50.85 107.39 R4XS2 50.66 109.51 (r4x2rp) 50.12 107.47 R4XS2 50.65 107.47 R4XS2 50.65 109.51 R4XS2 50.95 109.58 R4XS2 50.95 109.58 R4XS2 50.95 109.58 R4XS2 50.95 109.58 R4XS2 50.95 109.58 R4XS2 50.95 109.58 R4XS2 50.95 109.58 R4XS2 50.95 109.58 R4XS2 50.95 109.58 R4XS2 50.95 109.58 R4XS2 50.95 107.44 R4XS2 50.95 107.47 R4XS2 50.95 107.47 R4XS2 50.95 107.47 R4XS2 50.95 107.47 R4XS2 50.95 107.48 R4XS2 50.95 109.58 R4XS2 50.95 10											
33.88 109.69 X2LP 33.88 109.68 x2lp 33.98 109.68 (x2lp) 25.44 110.29 R4XS2 24.89 110.28 R4XS2 33.81 109.13 X2 35.27 109.36 x2 37.48 109.21 bf 36.75 109.43 (x2) 30.56 109.9 R4XS2 22.59 110.02 R4XS2 43.32 108.34 X2 38.6 108.99 x2 39.44 109.06 (x2) 30.56 109.9 R4XS2 32.07 109.68 R4XS2 44.33 109.77 4 X2 43.55 108.41 x2 44.5 108.88 (x2) 33.84 109.76 R4XS2LPO7 33.66 109.7 R4XS2LPO7 44.5 108.61 x2 44.5 108.88 (x2) 35.89 109.56 R4XS2 38.89 109.06 R4XS2 50.05 107.12 T 45.56 108.19 x2 46.47 108.63 (x2) 38.07 109.18 R4XS2 40.99 109.02 R4XS2 50.11 107.91 X2EW 48.93 107.83 x2 50.06 108.1 (x2) 43.41 109.09 R4XS2 45.99 109.02 R4XS2 55.11 109.55 X2E 49.91 107.44 x2 51.4 107.19 (x2) 46.63 (x2) 43.43 109.03 R4XS2 45.99 109.6 R4XS2 55.83 109.15 X2E 49.91 107.44 x2 51.4 107.19 (x2) 46.61 30.87 R4XS2 45.99 109.75 R4XS2 59.28 109.42 X2RP 50.91 107.18 x2 52.19 107.27 (x2) 48.61 108.88 R4XS2 44.81 108.7 R4XS2 61.08 109.75 X2 51.38 107.43 x2 53.24 108.39 (x2) 48.77 108.14 R4XS2 49.86 108.6 R4XS2 55.27 109.42 X2 52.64 108.36 x2 53.24 109.94 2 X2 52.64 108.36 x2 53.24 109.94 2 X2 52.64 108.36 x2 57.09 109.42 (x2) 48.77 108.14 R4XS2 49.86 107.99 R4XS2 55.25 109.42 (x2) 48.77 108.14 R4XS2 50.85 107.99 R4XS2 55.25 109.48 X2 55.09 109.38 bf 68.18 112.48 (x2) 55.04 107.45 R4XS2 50.25 107.47 R4XS2 50.85 107.48 R4XS2 50.25 107.47 R4XS2 50.99 109.38 bf 68.18 112.48 (x2) 50.24 107.42 R4XS2 50.25 107.47 R4XS2 50.99 109.58 x2 59.96 109.58 x2 59.96 109.58 x2 59.96 109.58 x2 59.96 109.58 x2 59.96 109.55 x2 59.96 109.55 x2 59.96 109.55 x2 59.96 109.55 x2 59.96 109.55 x2 59.96 109.55 x2 59.96 109.55 x2 59.96 109.57 R4XS2 50.25 50.99 109.58 x2 59.96 109.55 x2 59.96 109.55 R4XS2 50.25 50.91 100.47 R4XS2 50.25 50.91 100.95 R4XS2 50.99 109.95 R4XS2 50.99 109											
35.81 109.13 X2 35.27 109.36 X2 37.48 109.21 bf 36.75 109.43 (X2) 30.56 109.9 R4XS2 22.859 110.02 R4XS2 43.32 108.96 X2 37.48 109.21 bf 36.75 109.43 (X2) 30.56 109.9 R4XS2 32.07 109.68 R4XS2 46.49 107.9 X2EW 40.37 108.85 X2 42.08 109.12 (X2) 34.01 109.69 R4XS2LPO 33.86 109.7 R4XS2LPO 48.28 107.74 X2 43.55 108.41 X2 44.55 108.86 (X2) 38.67 109.18 R4XS2 40.99 109.02 R4XS2 50.05 107.12 T 45.56 108.19 X2 46.47 108.63 (X2) 38.07 109.18 R4XS2 40.99 109.02 R4XS2 50.71 107.11 X2 47.76 108.16 X2 48.98 108.41 (X2W) 41.08 109.14 R4XS2 40.99 109.02 R4XS2 50.25 108.65 X2 49.31 107.66 X2 50.06 108.16 (X2) 43.01 109.03 R4XS2 45.1 108.66 R4XS2 50.25 108.65 X2 49.31 107.66 X2 50.06 108.16 (X2) 48.98 108.41 (X2W) 41.08 109.14 R4XS2 40.99 109.02 R4XS2 50.33 107.93 (X2) 46.01 109.03 R4XS2 45.1 108.66 R4XS2 50.33 107.39 (X2) 46.63 108.72 R4XS2 45.99 108.75 R4XS2 50.38 109.15 X2 50.42 107.25 X2 52.49 107.27 (X2) 46.63 108.86 R4XS2 47.48 108.75 R4XS2 50.26 109.15 X2 50.91 107.18 X2 52.88 108.38 (X2W) 48.11 108.42 R4XS2 49.46 108.76 R4XS2 65.11 111.33 X2 51.81 107.87 X2 53.24 108.39 (X2W) 48.11 108.42 R4XS2 49.46 107.99 R4XS2W 69.83 113.09 X2 52.07 107.87 X2 53.24 108.39 (X2W) 48.71 108.42 R4XS2 49.46 107.99 R4XS2W 69.83 113.09 X2 52.07 107.87 X2 53.24 108.39 (X2W) 48.71 108.42 R4XS2 49.46 107.99 R4XS2W 69.83 113.09 X2 52.07 107.87 X2 53.24 108.39 (X2W) 48.71 108.42 R4XS2 49.46 107.99 R4XS2W 69.83 113.09 X2 52.07 107.87 X2 53.24 108.39 (X2W) 48.71 108.42 R4XS2 49.46 107.99 R4XS2W 69.83 113.09 X2 52.07 107.87 X2 54.67 109.11 (X2) 48.97 107.51 R4XS2 52.56 107.58 R4XS2 52.67 109.93 R4XS2 55.09 109.38 bf 68.18 112.48 (X2) 51.4 107.41 R4XS2 52.52 52.56 107.58 R4XS2 52.56 107.58 R4XS2 52.44 109.44 R4XS2 52.44 109.93 R4XS2 52.44 109.94 R4XS2 52.44 109.94 R4XS2 52.44 109.91 R4XS2 52.44 109.94 R4XS2 52.44 109.91 R4XS2 52.44 109.91 R4XS2 52.44 109.91 R4XS2 52.44 109.91 R4XS2 52.44 109.91 R4XS2 52.44 109.91 R4XS2 52.44 109.91 R4XS2 52.44 109.91 R4XS2 52.54 109.91 R4XS2 52.54 109.91 R4XS2 52.44 109.91 R4XS2 52.44 109.91 R4XS2 52.44 109.91 R4XS2 5											
38.85											
43.32											
46.49 107.9 X2EW 40.37 108.85 X2 42.08 109.12 (X2) 34.01 109.69 R4X2LP 35.08 109.56 R4XS2 50.05 107.12 T 45.56 108.41 X2 44.5 108.68 (X2) 35.89 109.56 R4XS2 38.89 109.06 R4XS2 50.05 107.12 T 45.56 108.19 X2 46.47 108.63 (X2) 38.07 109.18 R4XS2 40.99 109.02 R4XS2 50.71 107.11 X2 47.76 108.16 X2 48.98 108.41 (X2) 41.08 109.14 R4XS2 43.8 109.06 R4XS2 52.1 107.91 X2EW 46.93 107.66 X2 50.06 108.1 (X2) 43.43 109.03 R4XS2 45.1 108.66 R4XS2 55.1 108.65 X2 49.31 107.66 X2 50.33 107.39 (X2) 46.03 108.72 R4XS2 45.91 108.75 R4XS2 55.11 109.35 X2BF 49.91 107.44 X2 51.4 107.19 (X2) 46.6 108.87 R4XS2 46.48 108.57 R4XS2 59.28 109.42 X2RP 50.91 107.18 X2 52.88 109.42 X2RP 50.91 107.48 X2 53.21 108.39 (X2) 48.10 108.42 R4XS2 48.48 108.6 R4XS2 61.08 109.75 X2 51.38 107.43 X2 53.21 108.39 (X2) 48.47 108.14 R4XS2W 49.05 107.63 R4XS2 69.83 113.09 X2 52.07 107.87 X2 53.54 108.68 (X2) 48.72 108.2 R4XS2 49.46 107.98 R4XS2 60.24 109.42 X2 55.4 109.46 X2 57.09 109.42 (X2) 49.48 107.45 R4XS2 50.85 107.65 R4XS2 55.19 109.04 (X2) 55.4 109.46 X2 55.7 108.49 X2 55.7 108.49 X2 55.7 108.49 X2 55.7 108.49 X2 55.9 109.58 X2 55.9 109.38 D1 109.55 X2 55.9 109.38 D1 109.37 X2 55.9 109.38 D1 55.4 109.46 X2 55.9 109.58 X2 59.96 109.55 X2P 59.96 109.55 X2P 59.96 109.55 X2P 59.96 109.55 X2P 59.96 109.55 X2P 59.96 109.55 X2P 59.96 109.55 X2P 59.96 109.58 X2 59.96 109.55 X2P 59.96 109.58 X2 59.96 109.55 X2P 59.96 109.58 X2 59.96 109.55 X2P 59.96 109.58 X2 59.											
48.28											
50.05											
50.71											
52.1 107.91 X2EW 48.93 107.83 x2 50.06 108.1 (x2) 43.43 109.03 R4XS2 45.91 107.66 x2 50.33 107.39 (x2) 46.03 108.72 R4XS2 45.99 108.75 R4XS2 55.11 109.35 X2BF 49.91 107.44 x2 51.4 107.19 (x2) 46.6 108.87 R4XS2 45.99 108.75 R4XS2 58.38 109.15 X2 50.42 107.25 x2 52.19 107.27 (x2) 46.63 108.86 R4XS2 47.48 108.76 R4XS2 59.28 109.42 X2RP 50.91 107.18 x2 52.88 108.38 (x2w) 48.1 108.42 R4XS2 48.48 108.76 R4XS2 61.08 109.55 X2 51.38 107.43 x2 53.24 108.39 (x2) 48.47 108.14 R4XS2W 49.05 107.63 R4XS2 69.81 111.33 X2 51.81 107.87 x2 53.54 108.68 (x2) 48.72 108.14 R4XS2 49.46 107.99 R4XS2W											
53.25											
55.11 109.35 X2BF 49.91 107.44 x2 51.4 107.19 (x2) 46.6 108.87 R4XS2 46.48 108.57 R4XS2 59.28 109.42 X2RP 50.91 107.18 x2 52.88 108.38 (x2w) 48.1 108.42 R4XS2 47.48 108.7 R4XS2 66.108 109.75 X2 51.38 107.43 x2 53.21 108.39 (x2) 48.47 108.14 R4XS2W 49.05 107.63 R4XS2 65.1 111.33 X2 51.81 107.87 x2 53.54 108.68 (x2) 48.72 108.2 R4XS2 49.46 107.99 R4XS2W 69.83 113.09 X2 52.07 107.87 x2 54.67 109.11 (x2) 48.97 107.51 R4XS2 49.46 107.99 R4XS2W 60.24 109.42 X2 52.46 108.36 x2 57.09 109.42 (x2) 49.48 107.45 R4XS2 50.25 107.44 R4XS2 52.54 108.69 R4XS2 52.79 109.42 (x2) 55.7 108.49 x2 60.36 109.51 (r4x2rp) 50.12 107.47 R4XS2 50.85 107.39 R4XS2 55.49 109.94 R4XS2 55.49 109.94 R4XS2 55.49 109.94 R4XS2 55.49 109.94 R4XS2 55.49 109.95 (x2) 55.49 109.94 R4XS2 52.56 107.58 R4XS2 59.96 109.55 x2rp 59.96 109.55 x2rp 59.96 109.58 x2 59.96 109.55 x2rp 59.96 109.55 x2rp 59.96 109.55 x2rp 59.96 109.55 x2rp 59.96 109.55 x2rp 59.96 109.55 x2rp 59.96 109.58 x2 59.96 109.55 x2rp 59.96 109.58 x2 59.96											
58.38											
59.28											
61.08 109.75 X2 51.38 107.43 X2 53.21 108.39 (X2) 48.47 108.14 R4XS2W 49.05 107.63 R4XS2 65.1 111.33 X2 51.81 107.87 X2 53.54 108.68 (X2) 48.72 108.2 R4XS2 49.46 107.99 R4XS2W 60.24 109.42 X2 52.07 107.87 X2 54.67 109.11 (X2) 48.97 107.51 R4XS2 50.25 107.65 R4XS2 57.09 109.42 (X2) 49.48 107.45 R4XS2 50.25 107.44 R4XS2 52.7 108.49 X2 60.36 109.51 (R4Xzp) 50.12 107.47 R4XS2 50.85 107.39 R4XS2 54.82 109.28 X2 55.09 109.38 bf 68.18 112.48 (X2) 51.4 107.41 R4XS2 52.56 107.58 R4XS2 55.09 109.37 X2 55.09 109.37 X2 55.09 109.37 X2 55.09 109.38 bf 68.18 112.48 (X2) 51.4 107.41 R4XS2 52.56 107.58 R4XS2 57.01 109.37 X2 59.96 109.55 X2p 59.96 109.55 X2p 59.96 109.55 X2p 59.96 109.55 X2p 59.96 109.58 pp 59.96 109.95 pp 59.96 109.58 pp 59.96 109.58 pp 59											
65.1 111.33 X2 51.81 107.87 X2 53.54 108.68 (X2) 48.72 108.2 R4XS2 49.46 107.99 R4XS2W 69.83 113.09 X2 52.07 107.87 X2 54.67 109.11 (X2) 48.97 107.51 R4XS2 49.85 107.65 R4XS2 52.46 108.36 X2 52.46 108.36 X2 52.46 108.36 X2 52.46 109.51 (r4X2rp) 50.12 107.47 R4XS2 50.25 107.44 R4XS2 54.19 109.01 X2 60.82 109.55 (X2) 50.23 107.38 T 51.55 107.39 R4XS2 55.09 109.38 bf 68.18 112.48 (X2) 51.4 107.41 R4XS2 52.15 107.47 R4XS2 55.4 109.46 X2 70.91 113.39 (X2) 52.2 107.42 R4XS2 52.78 108.6 R4XS2 57.09 109.37 X2 58.28 109.28 X2 59.96 109.55 X2rp 59.96 109.55 X2rp 59.96 109.58 rp 59.96 109.58 rp 59.96 109.58 rp 59.96 109.58 R4XS2 56.66 109.51 R4XS2 52.01 109.47 R4XS2 52.01 109.47 R4XS2 52.01 109.47 R4XS2 52.01 109.47 R4XS2 52.01 109.51 R											
69.83 113.09 X2 52.07 107.87 X2 54.67 109.11 (x2) 48.97 107.51 R4XS2 49.85 107.65 R4XS2 50.24 109.42 X2 52.46 108.36 x2 57.09 109.42 (x2) 49.48 107.45 R4XS2 50.25 107.44 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 107.49 R4XS2 52.76 109.46 R4XS2 52.76 109.46 R4XS2 52.40 109.47 R4XS2 52.40 10											
60.24 109.42 X2 52.46 108.36 X2 57.09 109.42 (X2) 49.48 107.45 R4XS2 50.25 107.44 R4XS2 52.7 108.49 X2 60.36 109.51 (r4x2rp) 50.12 107.47 R4XS2 50.85 107.39 R4XS2 54.19 109.01 X2 60.82 109.55 (X2) 50.23 107.38 T 51.55 107.35 R4XS2 55.09 109.38 bf 68.18 112.48 (X2) 51.4 107.42 R4XS2 52.56 107.47 R4XS2 55.09 109.38 bf 68.18 112.48 (X2) 51.4 107.41 R4XS2 52.56 107.47 R4XS2 55.09 109.37 X2 57.01 109.37 X2 57.01 109.37 X2 58.28 109.28 X2 59.96 109.55 X2rp 59.96 109.55 X2rp 59.96 109.58 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.96 rp 59.											
52.7 108.49											
54.19 109.01	00.24	103.42	AZ								
54.82 109.28 x2 64.09 110.69 (x2) 50.84 107.42 R4XS2 52.56 107.47 R4XS2 55.09 109.38 bf 68.18 112.48 (x2) 51.4 107.41 R4XS2 52.56 107.58 R4XS2 55.4 109.46 x2 70.91 113.39 (x2) 52.24 108.24 R4XS2 52.60 109.58 R4XS2 52.98 109.28 x2 52.44 107.52 R4XS2 52.44 107.52 R4XS2 52.44 109.48 R4XS2 52.58 109.48 R4XS2 59.96 109.55 x2rp 59.96 109.58 rp 54.96 109.58 rp 54.96 109.58 rp 55.66 109.48 R4XS2 56.20 109.51 R4XS2 56.66 109.51 R4XS2 56.66 109.51 R4XS2 60.2 109.51 R4XS2 58.33 109.41 R4XS2 60.2 109.51 R4XS2 F0.58 109.41 R4XS2 60.2 109.51 R4XS2 F0.58 13 109.41 R4XS2 F0.58 13 1				-			, ,,				
55.09 109.38 bf 68.18 112.48 (x2) 51.4 107.41 R4XS2 52.56 107.58 R4XS2 55.4 109.46 x2 70.91 113.39 (x2) 52.2 107.42 R4XS2 52.78 108.6 R4XS2 57.01 109.37 x2 52.24 108.24 R4XS2W 54.09 109.05 R4XS2 58.28 109.28 x2 52.44 107.52 R4XS2 55.4 109.51 R4XS2 59.96 109.55 x2rp 59.96 109.58 rp 59.96 109.58 rp 54.96 109.48 R4XS2 55.49 109.48 R4XS2 59.3 109.48 R4XS2 59.3 109.48 R4XS2 56.56 109.49 R4XS2 59.3 109.51 R4XS2 56.56 109.51 R4XS2 56.56 109.51 R4XS2 56.56 109.51 R4XS2 56.56 109.51 R4XS2 57.5 109.46 R4XS2 57.5 109.46 R4XS2 59.3 109.51 R4XS2 59.3 109.51 R4XS2 59.3 109.51 R4XS2 56.56 109.51 R4XS2 59.3 109.51											
55.4 109.46 x2 70.91 113.39 (x2) 52.2 107.42 R4XS2 52.78 108.6 R4XS2 57.01 109.37 x2 52.24 108.24 R4XS2W 54.09 109.56 R4XS2 58.28 109.28 x2 59.96 109.55 x2rp 59.96 109.58 rp 54.96 109.58 rp 54.96 109.58 rp 54.96 109.58 rp 55.64 109.49 R4XS2 59.3 109.39 R4XS2 56.66 109.49 R4XS2 59.3 109.39 R4XS2 56.66 109.51 R4XS2 59.3 109.39 R4XS2 56.56 109.51 R4XS2 59.3 109.41 R4XS2 59											
57.01 109.37 x2 52.24 108.24 R4XS2W 54.09 109.05 R4XS2 58.28 109.28 x2 52.44 107.52 R4XS2 55.4 109.51 R4XS2 59.96 109.55 x2rp 59.96 109.58 rp 54.96 109.58 rp 54.96 109.58 rp 54.96 109.48 R4XS2 59.3 109.39 R4XS2											
58.28 109.28 x2 59.96 109.55 x2rp 59.96 109.58 rp 59.65 109.58 rd 59.65 109.58						70.51	110.00 (AZ)				
59.96 109.55 x2rp 59.96 109.58 rp 54.96 109.49 R4XS2 55.26 109.49 R4XS2 55.36 109.49 R4XS2 56.56 109.51 R4XS2 60.2 109.51 R4XS2RPC 58.13 109.41 R4XS2 62.01 110.04 R4XS2											
59.96 109.58 rp 54.96 109.49 R4XS2 59.3 109.39 R4XS2 56.56 109.51 R4XS2 60.2 109.51 R4XS2RPC 58.13 109.41 R4XS2 62.01 110.04 R4XS2											
56.56 109.51 R4XS2 60.2 109.51 R4XS2RP0 58.13 109.41 R4XS2 62.01 110.04 R4XS2											
58.13 109.41 R4XS2 62.01 110.04 R4XS2					 ъ.						
								60.04	109.6 R4XS2RP0		

Photo of Area 4 Cross-Section #2 - Looking Downstream

	As-Built	2005	2005	2007	2008
Area	21.5	18.1	13.9	13.16	13.36
Width	22.6	21.2	20.3	19.3	19.0
Mean Depth	1.0	0.9	0.7	0.7	0.7
Max Depth	2.3	2.2	2.2	2.0	2.1

Purlear Phase I 1 -Lower Middle Trib (Lower Section) Reach 5

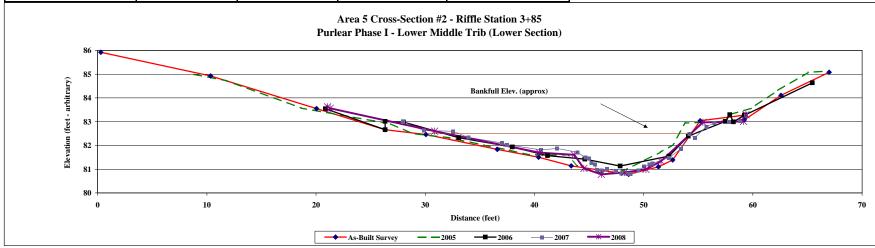

Pool 7/14/2008 C George, Morgan Feature

	2004 iilt Survey			2005 MY - 01			2006 MY - 02		2007 MY - 03		2008 MY - 04	
Station	Elev.	Notes	Station	Elev.	Notes	Station	Elev. Notes	Station	Elev. Notes	Station	Elev.	Notes
8.05	86.46	X1	7.32	86.51	x1	17.91	83.53 (x1p)	13.02	85.02 R5X1	18.02	83.51	R5XS1LP08
10.4	85.98	X1	8.35	86.39	x1	18.02	83.5 (r5x1lp)	15.47	84.19 R5X1	18.89	83.61	R5XS1
14.88	84.65	X1	11.25	85.56	x1	18.02	83.51 (r5x1lp)	17.87	83.52 R5X1LP07	22.23	83.15	R5XS1
18.86	83.54	X1LP	14.78	84.55	x1	18.86	83.54 (X1LP)	18.01	83.47 R5X1	23.5	81.52	R5XS1W
19.15	83.5	X1	17.32	83.77	x1	22.36	83.06 (r5x1)	19.65	83.41 R5X1	23.92	81.24	R5XS1
22.45	83.41	X1	17.91	83.53	x1p	23.77	81.75 (r5x1)	21.64	83.31 R5X1	25.3	80.42	R5XS1
22.57	83.38	X1B	17.99	83.53	lp	26.7	80.39 (r5x1)	22.83	83.11 R5X1	26.98	80.27	R5XS1
24.16	82.44	X1	18.71	83.55	x1	28.83	80.55 (r5x1)	23.34	82.4 R5X1	29.23	80.55	R5XS1
24.97	81.68	X1EW	21.61	83.44	x1	31.04	81.99 (r5x1w)	23.8	81.8 R5X1W	30.6	81.49	R5XS1W
26.89	80.82	X1	23.35	82.72	x1	31.07	82.08 (r5x1)	24.04	81.06 R5X1	31.15	81.12	R5XS1
29.17	81.24	X1	23.71	82.21	x1	34.46	82.23 (r5x1)	25.46	80.57 R5X1	31.72	82.16	R5XS1
31.03	81.41	X1	24.05	81.09	x1	37.9	82.59 (r5x1)	26.13	80.23 R5X1	36.21	82.5	R5XS1
33.05	81.74	X1EW	25.72	80.15	x1	42.53	83.36 (r5x1)	26.85	80.19 R5X1	45.01	83.62	R5XS1
38.78	82.47	X1	26.04	79.96	t	45.95	83.83 (r5x1)	27.54	80.41 R5X1	48.01	84.15	R5XS1
43.49	83.24	X1	27.48	80.28	x1	48.27	84.3 (x1p)	29.28	80.93 R5X1	48.18	84.31	R5XS1RP08
48.91	84.19	X1	28.34	80.33	x1	48.37	84.27 (r5x1rp)	29.58	81.38 R5X1			
48.99	84.31	X1	29.87	80.81	x1	64.72	87.3 (r5x1)	30.27	81.79 R5X1W			
53.87	85.09	X1	30.19	80.69	x1			30.67	82.04 R5X1			
62.21	87.18	X1	30.63	81.6	x1			31.88	82.39 R5X1			
66.44	87.28	X1	32.32	82.15	x1			35.15	82.42 R5X1			
			34.54	82.25	x1			37.37	82.59 R5X1			
			35.17	82.36	x1			39.78	82.78 R5X1			
			38.32	82.56	x1			41.84	83.22 R5X1			
			42.02	83.23	x1			44.81	83.65 R5X1			
			44.13	83.58	x1			46.69	83.96 R5X1			
			47.61	84.13	x1			47.95	84.28 R5X1RP07			
			48.04	84.34	rp			49.62	84.39 R5X1			
			48.27	84.3	x1p			53.17	85.19 R5X1			
			48.92	84.29	x1			56.37	85.96 R5X1	1		
			51.14	84.77	x1					I		
			53.38	85.2	x1					1		

Photo of Area 5 Cross-Section #1 - Looking Downstream

	As-Built	2005	2006	2007	2008
Area	26.8	29.4	27.4	26.21	26.43
Width	21.4	21.4	23.7	22.2	22.2
Mean Dept	1.3	1.4	1.2	1.2	1.2
Max Depth	2.5	3.3	2.9	3.1	3.0

Purlear Phase I 2 -Lower Middle Trib (Lower Section) Reach 5

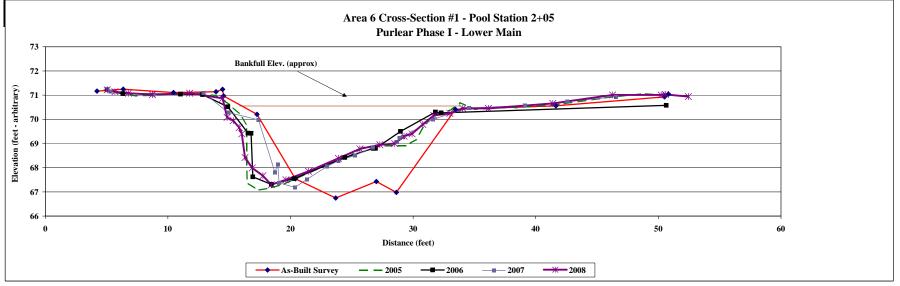

Feature Date Crew Riffle 7/14/2008 C George, Morgan

As-E	2004 Built Survey			2005 MY - 01			2006 MY - 02		2007 MY - 03		2008 MY - 04
Station	Elev.	Notes	Station	Elev.	Notes	Station	Elev. Notes	Station	Elev. Notes	Station	Elev. Notes
0.29	85.92	X2	8.82	84.99	x2	20.86	83.54 (r5x2)	27.95	83 R5X2LP07	21.06	83.62 R5XS2
10.35	84.92	X2	11.83	84.72	x2	26.33	82.66 (X2LP)	29.86	82.63 R5X2	21.28	83.56 R5XS2
20.04	83.55	X2	18.65	83.57	x2	26.33	83.01 (x2lp)	32.54	82.59 R5X2	30.86	82.6 R5XS2
26.33	82.66	X2LP	22.97	83.22	x2	27.99	82.98 (r5x2lp)	33.93	82.34 R5X2	40.44	81.7 R5XS2
30.06	82.46	X2	26.32	82.95	x2	33.07	82.32 (r5x2)	37.03	82.1 R5X2	43.65	81.6 R5XS2
36.6	81.83	2)	26.33	83.01	x2lp	37.97	81.93 (r5x2)	37.48	82.03 R5X2	44.53	81.03 R5XS2W
40.37	81.5	X2T	28.8	82.5	x2	41.2	81.57 (r5x2)	40.59	81.81 R5X2	46.12	80.78 R5XS2
43.37	81.14	X2EW	32.19	82.32	x2	44.61	81.42 (r5x2w)	42.07	81.87 R5X2	48.24	80.86 R5XS2
48.63	80.78	X2	35.39	82.01	x2	47.85	81.13 (r5x2)	43.92	81.71 R5X2	50.21	80.99 R5XS2W
51.35	81.1	X2EW	37.71	81.8	x2	52.31	81.55 (r5x2w)	44.67	81.49 R5X2	51.59	81.33 R5XS2
52.65	81.39	X2	39.3	81.62	x2	54.09	82.39 (r5x2)	44.98	81.45 R5X2	55.43	82.97 R5XS2
55.18	83.04	X2B	41.39	81.59	x2	57.47	83.01 (r5x2)	45.22	81.26 R5X2	59.14	83.01 R5XS2
59.21	83.27	X2RP	42.98	81.6	x2	57.88	83.29 (x2rp)	45.52	81.2 R5X2W	59.37	83.29 R5XS2RP08
59.22	83.08	X2	43.91	81.16	x2	58.22	82.99 (r5x2)	45.69	80.97 R5X2		
62.57	84.11	X2	45	80.98	x2	59.21	83.27 (X2RP)	46.12	80.95 R5X2		
66.98	85.08	X2	45.89	80.86	x2	59.28	83.28 (r5x2rp)	46.63	81.02 R5X2		
			47.3	80.82	x2	65.44	84.63 (r5x2)	47.45	80.93 R5X2		
			48.5	81.01	x2			47.97	80.83 R5X2		
			49.93	81.34	x2			48.52	80.81 R5X2		
			51.54	81.72	x2			48.77	80.81 R5X2		
			52.65	82.02	x2			49.53	80.94 R5X2		
			53.81	82.94	x2			50.01	81.11 R5X2		
			56.56	82.98	x2			50.52	81.2 R5X2W		
			57.54	83.05	x2			50.8	81.24 R5X2		
			57.88	83.29	x2rp			52.31	81.48 R5X2		
			59.86	83.56	x2			53.42	81.86 R5X2		
			61.96	84.23	x2			54.21	82.48 R5X2		
			65.07	85.08	x2			54.67	82.32 R5X2		
			66.45	85.12	x2			55.73	82.79 R5X2		
								56.49	82.95 R5X2		
								57.82	82.99 R5X2		
								58.85	83.03 R5X2		
								59.35	83.26 R5X2RP07		
						I					

Photo of Area 5 Cross-Section #2 - Looking Downstream

	As-Built	2005	2006	2007	2008
Area	23.1	19.8	17.9	17.9	18.2
Width	26.3	25.0	23.5	24.8	24.0
Mean Depth	0.9	0.8	0.8	0.7	0.8
Max Depth	1.7	1.7	1.4	1.7	1.7
w/d ratio	30.0	31.7	30.9	34.4	31.7
FPW	60	60	60	60	60
ER (greater than)	2.3	2.4	2.6	2.4	2.5
Stream Type	C4	C4	C4	C4	C4

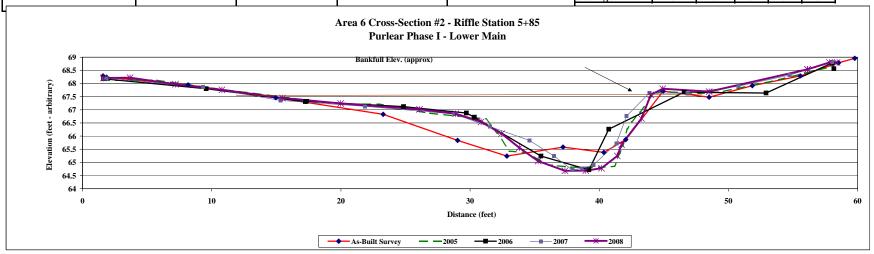
Purlear Phase I 1 - Lower Main Reach 6


Project Name Cross Section Feature Date Crew Pool 10/6/2008 Price, Shaffer

As-B	2004 uilt Survey			2005 MY - 01			2006 MY - 02			2007 MY - 03			2008 MY - 04	
Station	Elev.	Notes	Station	Elev.	Notes	Station	Elev. Notes		Station	Elev.	Notes	Station	Elev.	Notes
4.21	71.17	X1	4.81	71.22	xlp	5.05	71.22 (r6x1lp	o)	5.05	71.22	R6X1LP	5.05	71.2	2 r6x1lp08
6.35	71.25	X2LP	5.32	71.15	x	6.33	71.06 (r6x1)		5.33	71.15	R6X1	5.67	71.1	4 r6x1
10.45	71.11	X1	7.36	70.97	x	11.03	71.04 (r6x1)		8.84	71.03	R6X1	6.78	71.0	8 r6x1
13.92	71.14	X1	10.42	71.02	x	12.83	71.02 (r6x1)		12.91		R6X1	8.73		2 r6x1
14.46	71.24	В	12.27	71.08	x	14.89	70.52 (r6x1)		14.92		R6X1	11.77		8 r6x1
14.54	70.97	X1	13.96	70.98	x	16.53	69.43 (r6x1w	/)	17.38		R6X1	14.46		7 r6x1
17.27	70.21	X1	15.04	70.6	x	16.78	69.42 (r6x1)		18.72	67.81	R6X1	14.83	70.0	8 r6x1
20.4	67.54	X1	15.83	70.23	x	16.93	67.62 (r6x1)		18.96	68.14	R6X1	15.33	69.9	4 r6x1
23.69	66.75	X1	16.42	69.79	x	18.44	67.31 (r6x1)		19.07		R6X1	15.82		6 r6x1
27	67.43	X1	16.45	67.38	x	20.29	67.55 (r6x1)		20.36		R6X1	16.02		4 r6x1
28.63	66.98	X1	17.35	67.07	x	24.43	68.42 (r6x1)		21.35		R6X1	16.29		2 r6x1
33.44	70.41	X1	18.32	67.16	x	26.74	68.8 (r6x1)		22.96		R6X1	16.87		9 r6x1
41.64	70.56	X1	19.5	67.32	x	26.93	68.8 (r6x1)		23.9		R6X1	17.75		7 r6x1
50.5	70.93	X1RP	23.5	68.24	x	28.97	69.5 (r6x1w		25.24		R6X1	18.42		3 r6x1
50.82	71.04	X1	24.77	68.46	x	31.81	70.3 (r6x1)		26.7		R6X1	19.63		5 r6x1
			25.91	68.84	х	32.29	70.27 (r6x1)		28.65		R6X1	21.47		5 r6x1
			27.79	68.91	х	50.64	70.58 (r6x1r)	p)	28.9		R6X1	23.9		9 r6x1
			29.4	68.91	х				29.15		R6X1W	25.65		8 r6x1
			30.23	69.17	х				31.6		R6X1	27.28		5 r6x1
			30.83	69.67	x				34.57		R6X1	28.5		9 r6x1
			31.58	70.14	x				39.1	70.57	R6X1	29.25		3 r6x1w
			33.16	70.41	x				42.57		R6X1	29.91		4 r6x1
			33.84	70.69	bf				46.54		R6X1	30.78		9 r6x1
			35.02	70.41	x				50.64	70.58	R6X1RP	31.68	70.1	6 r6x1
			38.05	70.5	bf							32.99	70.2	5 r6x1
			38.45	70.48	x							34.05	70.4	6 r6x1
			42.09	70.63	x							36.13		5 r6x1
			45.65	70.89	x							41.39		6 r6x1
			48.74	71.06	x							46.26		1 r6x1
			50.29	71	x							50.22	71.0	1 r6x1
			50.5	71.06	xrp							50.56		3 r6x1rp08
												52.44	70.9	4 r6x1

Photo of Area 6 Cross-Section #1 - Looking Downstream

Area	As-Built 43.6	2005 36.3	2006 33.2	2007 31.8	2008 35.1
Width	18.9	19.2	17.9	19.7	19.6
Mean Depth	2.3	1.9	1.9	1.6	1.8
Max Depth	3.8	3.5	3.3	3.4	3.3


Purlear Phase I 2 - Lower Main Reach 6 Riffle 10/6/2008 Price, Shaffer Feature Date Crew

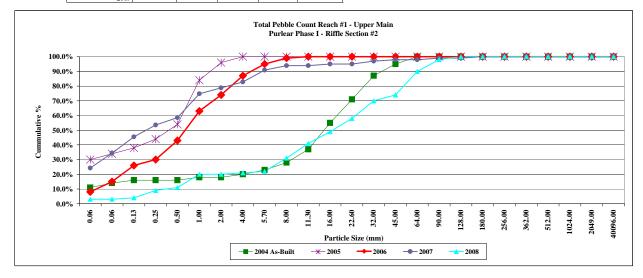
CW	Trice, Sharre	AI .										
As-I	2004 Built Survey			2005 MY - 01			2006 MY - 02		2007 MY - 03		2008 MY - 04	
Station	Elev.	Notes	Station	Elev.	Notes	Station	Elev. Notes	Station	Elev. Notes	Station	Elev.	Notes
1.59	68.29	X2LP	1.62	68.22	xlp	1.62	68.21 (r6x2lp)	1.61	68.19 r6x2LP07	1.62	68.21	r6x2lp08
1.86	68.24	X2	1.9	68.13	×	1.64	68.18 (r6x2)	1.85	68.19 r6x2	3.68	68.22	r6x2
8.17	67.95	X2	5.63	68.13	x	9.57	67.8 (r6x2)	9.31	67.87 r6x2	7.2	67.97	r6x2
14.96	67.46	X2	10.28	67.81	x	17.26	67.31 (r6x2)	15.32	67.36 r6x2	10.79	67.76	r6x2
23.27	66.83	X2	16.19	67.44	x	17.34	67.32 (r6x2)	21.85	67.13 r6x2	15.48	67.45	r6x2
29.04	65.84	X2EW	20.27	67.2	bf	24.85	67.12 (r6x2)	28.77	66.84 r6x2	19.98	67.24	r6x2
32.85	65.24	X2	23	67.22	x	29.71	66.88 (r6x2)	31.54	66.36 r6x2	26.08	67.02	r6x2
37.2	65.58	X2	26.72	66.88	x	30.33	66.72 (r6x2)	34.6	65.84 r6x2w	28.88	66.85	r6x2
40.36	65.38	X2	31.22	66.65	x	35.49	65.24 (r6x2)	36.48	65.25 r6x2	30.86	66.54	r6x2
42.05	65.87	X2EW	32.1	66.11	x	39.2	64.72 (r6x2)	37.91	64.71 R6X2	32.44	66.09	r6x2
44.95	67.71	X2B	33.05	65.43	x	40.74	66.26 (r6x2w)	38.66	64.78 R6X2	33.81	65.56	r6x2
48.51	67.48	X2	34.4	65.37	x	46.57	67.67 (r6x2)	39.55	64.9 R6X2	35.27	65.05	r6x2
51.85	67.92	X2	36.11	64.89	x	52.91	67.64 (r6x2)	41.32	65.72 R6X2W	37.35	64.68	r6x2
55.57	68.29	X2	36.37	64.89	x	58.03	68.78 (r6x2rp)	42.11	66.76 R6X2	38.96	64.69	r6x2
58.52	68.79	X2RP	37.79	64.82	x	58.17	68.56 (r6x2)	43.87	67.64 R6X2	40.17	64.78	r6x2
59.78	68.96	X2	40.02	64.81	x			46.83	67.63 R6X2	41.39	65.25	r6x2
			41.19	64.85	x			50.79	67.9 R6X2	41.73	65.68	r6x2w
			41.57	65.32	x			54.72	68.32 R6X2	43.27	66.67	r6x2
			41.82	65.6	x			58.03	68.82 R6X2RP07	44	67.57	r6x2
			42.18	66.28	x					44.91	67.8	r6x2
			42.5	66.54	x					48.51	67.69	r6x2
			43.12	66.9	x					56.12	68.54	r6x2
			44.16	67.57	x					56.12	68.54	r6x2
			44.8	67.7	x					57.82	68.8	r6x2
			47.71	67.62	x					58.42	68.8	r6x2rp08
			49.42	67.68	x							
			53.89	68.14	x							
			57.79	68.62	x							
			58.23	68.76	xrp			l				
			1									

Photo of Area 6 Cross-Section #2 - Looking Downstream

	As-Built	2005	2006	2007	2008
Area	40.2	37.8	35.2	35.5	39.1
Width	27.1	26.9	34.3	37.5	32.0
Mean Depth	1.5	1.4	1.0	0.9	1.2
Max Depth	2.5	2.9	3.0	3.0	3.0
w/d ratio	18.3	19.2	33.4	39.6	26.2
FPW	60	60	60	60	60
ER (greater than)	2.2	2.2	1.7	1.6	1.9
Stream Type	C4	C4	C4	C4	C4

 Project Name
 Purlear Phase I

 Cross Section
 2 - Reach #1 - Upper Main

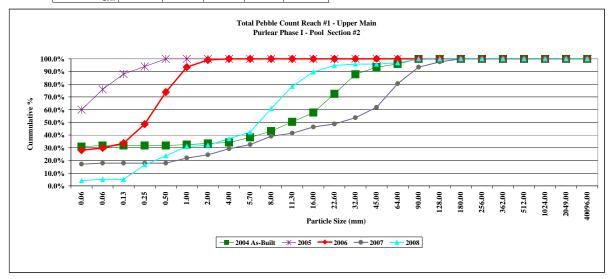

 Feature
 Riffle

 Date
 7/23/2008

 Crew
 C. George, M. Hancock

			2004 As	s-Built			2005				2006	į			2007			2008		
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Riffle	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	11	11.0%	11.0%	9	6	30.0%	30.0%	3	5	8.0%	8.0%	24	24.2%	24.2%	0	3	3.0%	3.0%
	very fine sand	0.062	3	3.0%	14.0%	0	2	4.0%	34.0%	0	7	7.0%	15.0%	10	10.1%	34.3%	0	0	0.0%	3.0%
	fine sand	0.125	2	2.0%	16.0%	0	2	4.0%	38.0%	3	8	11.0%	26.0%	11	11.1%	45.5%	0	1	1.0%	4.0%
Sand	medium sand	0.25	0	0.0%	16.0%	3	0	6.0%	44.0%	4	0	4.0%	30.0%	8	8.1%	53.5%	0	5	5.0%	9.0%
	course sand	0.50	0	0.0%	16.0%	5	0	10.0%	54.0%	13	0	13.0%	43.0%	5	5.1%	58.6%	2	0	2.0%	11.0%
	very course sand	1.0	2	2.0%	18.0%	15	0	30.0%	84.0%	20	0	20.0%	63.0%	16	16.2%	74.7%	9	0	9.0%	20.0%
	very fine gravel	2.0	0	0.0%	18.0%	6	0	12.0%	96.0%	11	0	11.0%	74.0%	4	4.0%	78.8%	0	0	0.0%	20.0%
G	fine gravel	4.0	2	2.0%	20.0%	2	0	4.0%	100.0%	13	0	13.0%	87.0%	4	4.0%	82.8%	1	0	1.0%	21.0%
, a	fine gravel	5.7	3	3.0%	23.0%	0	0	0.0%	100.0%	8	0	8.0%	95.0%	8	8.1%	90.9%	1	0	1.0%	22.0%
1	medium gravel	8.0	5	5.0%	28.0%	0	0	0.0%	100.0%	4	0	4.0%	99.0%	3	3.0%	93.9%	9	0	9.0%	31.0%
a	medium gravel	11.3	9	9.0%	37.0%	0	0	0.0%	100.0%	1	0	1.0%	100.0%	0	0.0%	93.9%	10	0	10.0%	41.0%
· ·	course gravel	16.0	18	18.0%	55.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	1	1.0%	94.9%	7	1	8.0%	49.0%
e	course gravel	22.6	16	16.0%	71.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	94.9%	8	1	9.0%	58.0%
1	very course gravel	32	16	16.0%	87.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	2	2.0%	97.0%	9	3	12.0%	70.0%
	very course gravel	45	8	8.0%	95.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	1	1.0%	98.0%	2	2	4.0%	74.0%
	small cobble	64	5	5.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	98.0%	15	1	16.0%	90.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	1	1.0%	99.0%	6	2	8.0%	98.0%
Copple	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	99.0%	1	1	2.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	1	1.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	L / %of whole count		100	100.0%		40	10	100%		80	20	100%		99	100.0%		80	20	100%	

	d16	d35	d50	d84	d95
2004 As-Built	0.38	12.76	17.73	36.40	54.50
2005	0.00	0.12	0.60	1.50	2.88
2006	0.10	0.52	1.01	4.42	6.85
2007	0	0.062	0.2	4.43	19.3
2008	1.20	11.30	20.20	68.60	97.00
2009					

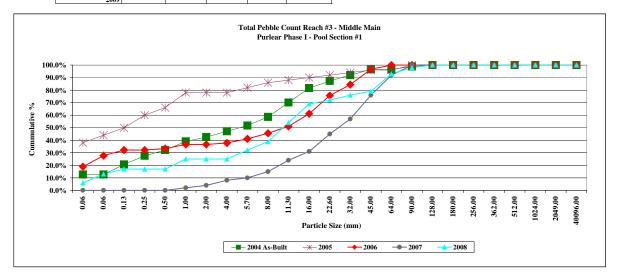

Purlear Phase I 1 - Reach #1 - Upper Main

Feature Pool 7/23/2008 Date

C. George, M. Hancock Crew

			2004 A	s-Built			2005				2006	i			2007			2008		
Description	Material	Size (mm)	Pool	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %	Pool	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	38	30.9%	30.9%	20	10	60.0%	60.0%	10	20	28.0%	28.0%	21	17.1%	17.1%	1	3	4.1%	4.1%
	very fine sand	0.062	1	0.8%	31.7%	8	0	16.0%	76.0%	2	0	1.9%	29.9%	1	0.8%	17.9%	0	1	1.0%	5.2%
	fine sand	0.125	0	0.0%	31.7%	6	0	12.0%	88.0%	4	0	3.7%	33.6%	0	0.0%	17.9%	0	0	0.0%	5.2%
Sand	medium sand	0.25	0	0.0%	31.7%	3	0	6.0%	94.0%	16	0	15.0%	48.6%	0	0.0%	17.9%	5	6	11.3%	16.5%
	course sand	0.50	0	0.0%	31.7%	3	0	6.0%	100.0%	27	0	25.2%	73.8%	0	0.0%	17.9%	4	3	7.2%	23.7%
	very course sand	1.0	1	0.8%	32.5%	0	0	0.0%	100.0%	21	0	19.6%	93.5%	5	4.1%	22.0%	7	0	7.2%	30.9%
	very fine gravel	2.0	1	0.8%	33.3%	0	0	0.0%	100.0%	6	0	5.6%	99.1%	3	2.4%	24.4%	1	0	1.0%	32.0%
G	fine gravel	4.0	1	0.8%	34.1%	0	0	0.0%	100.0%	1	0	0.9%	100.0%	6	4.9%	29.3%	5	0	5.2%	37.1%
r	fine gravel	5.7	5	4.1%	38.2%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	4	3.3%	32.5%	5	0	5.2%	42.3%
9	medium gravel	8.0	6	4.9%	43.1%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	8	6.5%	39.0%	17	1	18.6%	60.8%
v	medium gravel	11.3	9	7.3%	50.4%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	3	2.4%	41.5%	17	0	17.5%	78.4%
, e	course gravel	16.0	9	7.3%	57.7%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	6	4.9%	46.3%	10	1	11.3%	89.7%
i	course gravel	22.6	18	14.6%	72.4%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	3	2.4%	48.8%	4	1	5.2%	94.8%
1	very course gravel	32	19	15.4%	87.8%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	6	4.9%	53.7%	0	1	1.0%	95.9%
	very course gravel	45	7	5.7%	93.5%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	10	8.1%	61.8%	0	0	0.0%	95.9%
	small cobble	64	3	2.4%	95.9%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	23	18.7%	80.5%	1	0	1.0%	96.9%
Cobble	medium cobble	90	5	4.1%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	16	13.0%	93.5%	3	0	3.1%	100.0%
Cobbie	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	5	4.1%	97.6%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	3	2.4%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	4 / %of whole count		123	100.0%		40	10	100%		87	20	100%		123	100.0%		80	17	100%	

	d16	d35	d50	d84	d95
2004 As-Built	0.00	5.27	13.43	35.74	68.37
2005	0.00	0.00	0.00	0.16	0.44
2006	0.00	0.20	0.40	1.14	1.91
2007	0.06	6.85	27.30	68.00	109.00
2008	0.37	4.09	8.02	16.46	28.98
2009					


Purlear Phase I 1 - Reach #3 - Middle Main

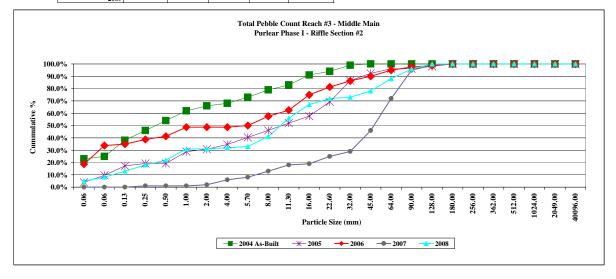
Pool 7/23/2008 Feature Date

C. George, M. Hancock Crew

			2004 As-	Built			2005				2006	í			2007			2008		
Description	Material	Size (mm)	Pool - Bed	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %	Pool - Bed	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	11	12.6%	12.6%	12	7	38.0%	38.0%	0	17	18.9%	18.9%	0	0.0%	0.0%	0	6	6.0%	6.0%
	very fine sand	0.062	0	0.0%	12.6%	0	3	6.0%	44.0%	0	8	8.9%	27.8%	0	0.0%	0.0%	0	7	7.0%	13.0%
	fine sand	0.125	7	8.0%	20.7%	1	2	6.0%	50.0%	1	3	4.4%	32.2%	0	0.0%	0.0%	0	4	4.0%	17.0%
Sand	medium sand	0.25	6	6.9%	27.6%	2	3	10.0%	60.0%	0	0	0.0%	32.2%	0	0.0%	0.0%	0	0	0.0%	17.0%
	course sand	0.50	4	4.6%	32.2%	2	1	6.0%	66.0%	0	1	1.1%	33.3%	0	0.0%	0.0%	0	0	0.0%	17.0%
	very course sand	1.0	6	6.9%	39.1%	4	2	12.0%	78.0%	2	1	3.3%	36.7%	2	2.0%	2.0%	8	0	8.0%	25.0%
	very fine gravel	2.0	3	3.4%	42.5%	0	0	0.0%	78.0%	0	0	0.0%	36.7%	2	2.0%	4.0%	0	0	0.0%	25.0%
G	fine gravel	4.0	4	4.6%	47.1%	0	0	0.0%	78.0%	1	0	1.1%	37.8%	4	4.0%	8.0%	0	0	0.0%	25.0%
, ,	fine gravel	5.7	4	4.6%	51.7%	2	0	4.0%	82.0%	3	0	3.3%	41.1%	2	2.0%	10.0%	7	0	7.0%	32.0%
	medium gravel	8.0	6	6.9%	58.6%	0	2	4.0%	86.0%	4	0	4.4%	45.6%	5	5.0%	15.0%	7	0	7.0%	39.0%
a v	medium gravel	11.3	10	11.5%	70.1%	1	0	2.0%	88.0%	5	0	5.6%	51.1%	9	9.0%	24.0%	15	0	15.0%	54.0%
,	course gravel	16.0	10	11.5%	81.6%	1	0	2.0%	90.0%	9	0	10.0%	61.1%	7	7.0%	31.0%	15	0	15.0%	69.0%
1	course gravel	22.6	5	5.7%	87.4%	1	0	2.0%	92.0%	13	0	14.4%	75.6%	14	14.0%	45.0%	2	1	3.0%	72.0%
1	very course gravel	32	4	4.6%	92.0%	1	0	2.0%	94.0%	8	0	8.9%	84.4%	12	12.0%	57.0%	3	1	4.0%	76.0%
	very course gravel	45	4	4.6%	96.6%	1	0	2.0%	96.0%	11	0	12.2%	96.7%	19	19.0%	76.0%	3	0	3.0%	79.0%
	small cobble	64	0	0.0%	96.6%	0	0	0.0%	96.0%	3	0	3.3%	100.0%	16	16.0%	92.0%	14	0	14.0%	93.0%
Cobble	medium cobble	90	2	2.3%	98.9%	2	0	4.0%	100.0%	0	0	0.0%	100.0%	8	8.0%	100.0%	4	1	5.0%	98.0%
Cobbic	large cobble	128	1	1.1%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	2	0	2.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		87	100.0%		30	20	100.0%		60	30	100.0%		100	100.0%		80	20	100.0%	

	d16	d35	d50	d84	d95
2004 As-Built	0.13	1.06	6.10	22.63	49.10
2005	0.00	0.00	0.19	8.25	46.50
2006	0.00	1.13	12.85	37.94	52.32
2007	8.37	17.89	26.52	54.50	73.75
2008	0.16	8.05	12.58	62.54	89.80
2000					

Project Name


Purlear Phase I 2 - Reach #3 - Middle Main Cross Section

Feature 7/23/2008 Date

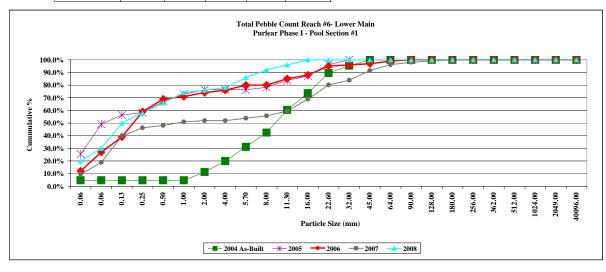
Crew Cross Section #1 C. George, M. Hancock

Cross Section #1			2004 As-	Built			2005				2006				2007			2008		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	23	23.0%	23.0%	0	2	3.8%	3.8%	0	15	18.8%	18.8%	0	0.0%	0.0%	0	5	5.0%	5.0%
	very fine sand	0.062	2	2.0%	25.0%	0	3	5.8%	9.6%	0	12	15.0%	33.8%	0	0.0%	0.0%	0	3	3.0%	8.0%
	fine sand	0.125	13	13.0%	38.0%	0	4	7.7%	17.3%	0	1	1.3%	35.0%	0	0.0%	0.0%	0	5	5.0%	13.0%
Sand	medium sand	0.25	8	8.0%	46.0%	0	1	1.9%	19.2%	3	0	3.8%	38.8%	1	1.0%	1.0%	0	5	5.0%	18.0%
	course sand	0.50	8	8.0%	54.0%	0	0	0.0%	19.2%	1	1	2.5%	41.3%	0	0.0%	1.0%	4	0	4.0%	22.0%
	very course sand	1.0	8	8.0%	62.0%	5	0	9.6%	28.8%	5	1	7.5%	48.8%	0	0.0%	1.0%	9	0	9.0%	31.0%
	very fine gravel	2.0	4	4.0%	66.0%	1	0	1.9%	30.8%	0	0	0.0%	48.8%	1	1.0%	2.0%	0	0	0.0%	31.0%
G	fine gravel	4.0	2	2.0%	68.0%	2	0	3.8%	34.6%	0	0	0.0%	48.8%	4	4.0%	6.0%	1	0	1.0%	32.0%
	fine gravel	5.7	5	5.0%	73.0%	3	0	5.8%	40.4%	1	0	1.3%	50.0%	2	2.0%	8.0%	1	0	1.0%	33.0%
	medium gravel	8.0	6	6.0%	79.0%	3	0	5.8%	46.2%	6	0	7.5%	57.5%	5	5.0%	13.0%	8	0	8.0%	41.0%
a v	medium gravel	11.3	4	4.0%	83.0%	3	0	5.8%	51.9%	4	0	5.0%	62.5%	5	5.0%	18.0%	15	0	15.0%	56.0%
,	course gravel	16.0	8	8.0%	91.0%	3	0	5.8%	57.7%	10	0	12.5%	75.0%	1	1.0%	19.0%	11	0	11.0%	67.0%
1	course gravel	22.6	3	3.0%	94.0%	6	0	11.5%	69.2%	5	0	6.3%	81.3%	6	6.0%	25.0%	5	0	5.0%	72.0%
1	very course gravel	32	5	5.0%	99.0%	9	0	17.3%	86.5%	4	0	5.0%	86.3%	4	4.0%	29.0%	1	0	1.0%	73.0%
	very course gravel	45	1	1.0%	100.0%	3	0	5.8%	92.3%	3	0	3.8%	90.0%	17	17.0%	46.0%	5	0	5.0%	78.0%
	small cobble	64	0	0.0%	100.0%	2	0	3.8%	96.2%	4	0	5.0%	95.0%	26	26.0%	72.0%	10	0	10.0%	88.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	96.2%	2	0	2.5%	97.5%	23	23.0%	95.0%	7	1	8.0%	96.0%
Cobbic	large cobble	128	0	0.0%	100.0%	1	0	1.9%	98.1%	1	0	1.3%	98.8%	4	4.0%	99.0%	3	1	4.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	1	0	1.9%	100.0%	1	0	1.3%	100.0%	1	1.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		100	100.0%		42	10	100%		50	30	100%		100	100.0%		80	20	100%	

	d16	d35	d50	d84	d95
2004 As-Built	0.00	0.17	0.56	14.36	29.54
2005	0.17	4.98	12.32	36.86	70.25
2006	0.00	0.19	6.85	33.46	77.00
2007	0.00	36.59	47.92	77.57	90.00
2008	0.30	7.55	12.05	68.00	105.00
2009					

Project Name Purlear Phase I

Cross Section 1 - Reach #6 - Lower Main


 Feature
 Pool

 Date
 10/7/2008

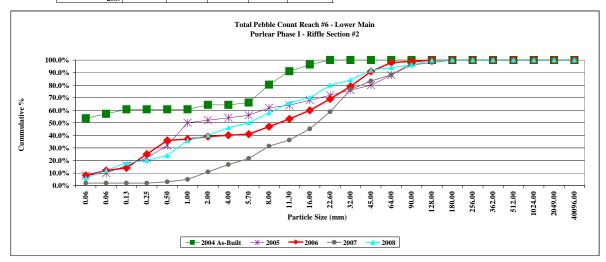
 Crew
 Price

			2004 As-	Built			2005				2006	i			2007			2008		
Description	Material	Size (mm)	Pool - Bed	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %	Pool - Bed	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	5	4.7%	4.7%	12	2	25.5%	25.5%	3	9	12.0%	12.0%	10	9.4%	9.4%	4	6	20.0%	20.0%
	very fine sand	0.062	0	0.0%	4.7%	7	6	23.6%	49.1%	8	7	15.0%	27.0%	10	9.4%	18.9%	3	2	10.0%	30.0%
	fine sand	0.125	0	0.0%	4.7%	3	1	7.3%	56.4%	8	4	12.0%	39.0%	22	20.8%	39.6%	8	2	20.0%	50.0%
Sand	medium sand	0.25	0	0.0%	4.7%	1	0	1.8%	58.2%	20	0	20.0%	59.0%	7	6.6%	46.2%	4	0	8.0%	58.0%
	course sand	0.50	0	0.0%	4.7%	4	1	9.1%	67.3%	10	0	10.0%	69.0%	2	1.9%	48.1%	4	0	8.0%	66.0%
	very course sand	1.0	0	0.0%	4.7%	3	0	5.5%	72.7%	2	0	2.0%	71.0%	3	2.8%	50.9%	4	0	8.0%	74.0%
	very fine gravel	2.0	7	6.6%	11.3%	2	0	3.6%	76.4%	3	0	3.0%	74.0%	1	0.9%	51.9%	1	0	2.0%	76.0%
G	fine gravel	4.0	9	8.5%	19.8%	0	0	0.0%	76.4%	2	0	2.0%	76.0%	0	0.0%	51.9%	1	0	2.0%	78.0%
G F	fine gravel	5.7	12	11.3%	31.1%	0	0	0.0%	76.4%	4	0	4.0%	80.0%	2	1.9%	53.8%	4	0	8.0%	86.0%
	medium gravel	8.0	12	11.3%	42.5%	1	0	1.8%	78.2%	0	0	0.0%	80.0%	2	1.9%	55.7%	3	0	6.0%	92.0%
a v	medium gravel	11.3	19	17.9%	60.4%	3	0	5.5%	83.6%	5	0	5.0%	85.0%	4	3.8%	59.4%	2	0	4.0%	96.0%
,	course gravel	16.0	14	13.2%	73.6%	2	0	3.6%	87.3%	3	0	3.0%	88.0%	10	9.4%	68.9%	2	0	4.0%	100.0%
1	course gravel	22.6	17	16.0%	89.6%	5	0	9.1%	96.4%	7	0	7.0%	95.0%	12	11.3%	80.2%	0	0	0.0%	100.0%
1	very course gravel	32	6	5.7%	95.3%	2	0	3.6%	100.0%	1	0	1.0%	96.0%	4	3.8%	84.0%	0	0	0.0%	100.0%
	very course gravel	45	5	4.7%	100.0%	0	0	0.0%	100.0%	1	0	1.0%	97.0%	8	7.5%	91.5%	0	0	0.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%	2	0	2.0%	99.0%	5	4.7%	96.2%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%	1	0	1.0%	100.0%	2	1.9%	98.1%	0	0	0.0%	100.0%
Copple	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	1	0.9%	99.1%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	1	0.9%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count	·	106	100.0%		45	10	100%		80	20	100%		106	100.0%		40	10	100%	

	d16	d35	d50	d84	d95
2004 As-Built	4.02	7.81	11.33	24.50	37.94
2005	0.00	0.07	0.11	14.22	26.10
2006	0.07	0.16	0.29	12.85	27.30
2007	0.06	0.11	0.86	32.00	63.19
2008	silt	0.12	0.19	6.35	12.65
2009					

Project Name Purlear Phase I

Cross Section 2 - Reach #6 - Lower Main

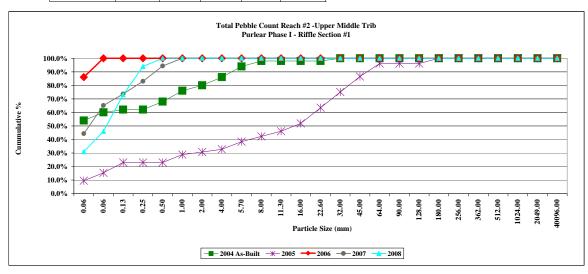

 Feature
 Riffle

 Date
 10/7/2008

 Crew
 Price

			2004 As	-Built			2005				2000	í		1	2007		1	2008		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	30	53.6%	53.6%	2	2	8.0%	8.0%	8	0	8.0%	8.0%	2	2.0%	2.0%	0	3	6.0%	6.0%
,	very fine sand	0.062	2	3.6%	57.1%	0	1	2.0%	10.0%	4	0	4.0%	12.0%	0	0.0%	2.0%	3	0	6.0%	12.0%
	fine sand	0.125	2	3.6%	60.7%	3	0	6.0%	16.0%	2	0	2.0%	14.0%	0	0.0%	2.0%	3	0	6.0%	18.0%
Sand	medium sand	0.25	0	0.0%	60.7%	2	1	6.0%	22.0%	11	0	11.0%	25.0%	0	0.0%	2.0%	0	1	2.0%	20.0%
	course sand	0.50	0	0.0%	60.7%	4	1	10.0%	32.0%	11	0	11.0%	36.0%	1	1.0%	2.9%	0	2	4.0%	24.0%
	very course sand	1.0	0	0.0%	60.7%	7	2	18.0%	50.0%	1	0	1.0%	37.0%	2	2.0%	4.9%	4	2	12.0%	36.0%
	very fine gravel	2.0	2	3.6%	64.3%	1	0	2.0%	52.0%	0	2	2.0%	39.0%	6	5.9%	10.8%	2	0	4.0%	40.0%
G	fine gravel	4.0	0	0.0%	64.3%	1	0	2.0%	54.0%	1	0	1.0%	40.0%	6	5.9%	16.7%	2	1	6.0%	46.0%
r	fine gravel	5.7	1	1.8%	66.1%	1	0	2.0%	56.0%	0	1	1.0%	41.0%	5	4.9%	21.6%	2	0	4.0%	50.0%
1	medium gravel	8.0	8	14.3%	80.4%	1	2	6.0%	62.0%	2	4	6.0%	47.0%	10	9.8%	31.4%	4	0	8.0%	58.0%
a .	medium gravel	11.3	6	10.7%	91.1%	1	0	2.0%	64.0%	3	3	6.0%	53.0%	5	4.9%	36.3%	4	0	8.0%	66.0%
v	course gravel	16.0	3	5.4%	96.4%	1	1	4.0%	68.0%	2	5	7.0%	60.0%	9	8.8%	45.1%	2	0	4.0%	70.0%
e	course gravel	22.6	2	3.6%	100.0%	2	0	4.0%	72.0%	0	9	9.0%	69.0%	14	13.7%	58.8%	4	1	10.0%	80.0%
1	very course gravel	32	0	0.0%	100.0%	2	0	4.0%	76.0%	0	10	10.0%	79.0%	18	17.6%	76.5%	2	0	4.0%	84.0%
	very course gravel	45	0	0.0%	100.0%	2	0	4.0%	80.0%	0	12	12.0%	91.0%	7	6.9%	83.3%	4	0	8.0%	92.0%
	small cobble	64	0	0.0%	100.0%	4	0	8.0%	88.0%	0	7	7.0%	98.0%	5	4.9%	88.2%	1	0	2.0%	94.0%
Cobble	medium cobble	90	0	0.0%	100.0%	5	0	10.0%	98.0%	0	1	1.0%	99.0%	8	7.8%	96.1%	1	0	2.0%	96.0%
Copple	large cobble	128	0	0.0%	100.0%	1	0	2.0%	100.0%	0	1	1.0%	100.0%	2	2.0%	98.0%	2	0	4.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	2	2.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	L / %of whole count		56	100.0%		40	10	100%		45	55	100%		102	100.0%		40	10	100%	

	d16	d35	d50	d84	d95
2004 As-Built	0.00	0.00	0.00	11.01	17.79
2005	0.19	0.88	1.50	65.75	99.40
2006	0.22	0.72	11.65	45.17	67.36
2007	4.10	10.42	18.36	47.71	86.38
2008	0.16	1.44	6.85	38.50	93.00
2009					

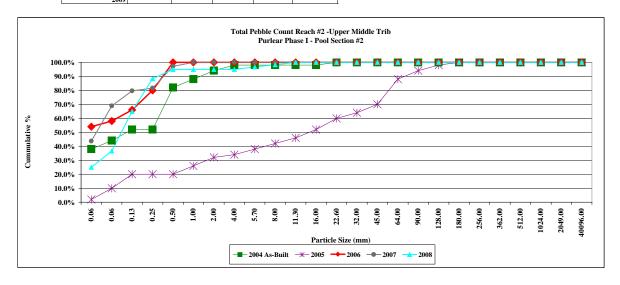

Project Name

Purlear Phase I 1 - Reach #2 - Upper Middle Trib Cross Section

Feature Riffle Date 7/23/2008 C. George, M. Hancock Crew

			2004 As	-Built			2005				2006	í			2007			2008		
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle	Riffle - Bank	%	Cum %	Riffle	Riffle - Bank	%	Cum %	Riffle	%	Cum %	Riffle	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	27	54.0%	54.0%	1	4	9.6%	9.6%	33	10	86.0%	86.0%	47	44.3%	44.3%	20	11	31.0%	31.0%
	very fine sand	0.062	3	6.0%	60.0%	0	3	5.8%	15.4%	7	0	14.0%	100.0%	22	20.8%	65.1%	15	0	15.0%	46.0%
	fine sand	0.125	1	2.0%	62.0%	1	3	7.7%	23.1%	0	0	0.0%	100.0%	9	8.5%	73.6%	18	9	27.0%	73.0%
Sand	medium sand	0.25	0	0.0%	62.0%	0	0	0.0%	23.1%	0	0	0.0%	100.0%	10	9.4%	83.0%	7	14	21.0%	94.0%
	course sand	0.50	3	6.0%	68.0%	0	0	0.0%	23.1%	0	0	0.0%	100.0%	12	11.3%	94.3%	0	6	6.0%	100.0%
	very course sand	1.0	4	8.0%	76.0%	3	0	5.8%	28.8%	0	0	0.0%	100.0%	6	5.7%	100.0%	0	0	0.0%	100.0%
	very fine gravel	2.0	2	4.0%	80.0%	1	0	1.9%	30.8%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
G	fine gravel	4.0	3	6.0%	86.0%	1	0	1.9%	32.7%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
r	fine gravel	5.7	4	8.0%	94.0%	3	0	5.8%	38.5%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	medium gravel	8.0	2	4.0%	98.0%	2	0	3.8%	42.3%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
a v	medium gravel	11.3	0	0.0%	98.0%	2	0	3.8%	46.2%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
•	course gravel	16.0	0	0.0%	98.0%	3	0	5.8%	51.9%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
1	course gravel	22.6	0	0.0%	98.0%	6	0	11.5%	63.5%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
1	very course gravel	32	1	2.0%	100.0%	6	0	11.5%	75.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very course gravel	45	0	0.0%	100.0%	6	0	11.5%	86.5%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small cobble	64	0	0.0%	100.0%	5	0	9.6%	96.2%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	96.2%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Copple	large cobble	128	0	0.0%	100.0%	0	0	0.0%	96.2%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	2	0	3.8%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	L / %of whole count		50	100.0%		42	10	100%		40	10	100%		106	100.0%		60	40	100%	

	d16	d35	d50	d84	d95
2004 As-Built	0.00	0.00	0.00	4.23	7.55
2005	0.10	5.65	17.42	50.98	74.30
2006	0.00	0.00	0.00	0.00	0.08
2007	0.00	0.00	0.06	0.27	0.56
2008	silt	0.07	0.11	0.29	0.44
2009					

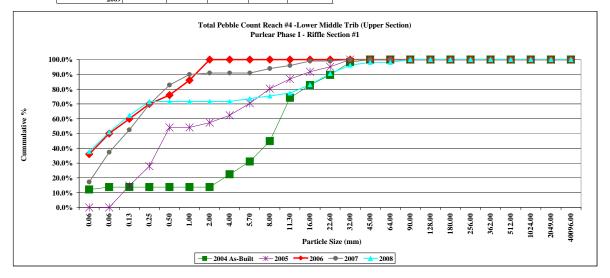


Purlear Phase I 2 - Reach #2 - Upper Middle Trib

Pool 7/23/2008 Feature Date C. George, M. Hancock Crew

			2004 A	s-Built			2005				2006				2007			2008		
Description	Material	Size (mm)	Pool	%	Cum %	Pool	Pool - Bank	%	Cum %	Pool	Pool - Bank	%	Cum %	Pool	%	Cum %	Pool	Pool - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	19	38.0%	38.0%	0	1	2.0%	2.0%	19	8	54.0%	54.0%	45	43.7%	43.7%	5	10	25.0%	25.0%
	very fine sand	0.062	3	6.0%	44.0%	0	4	8.0%	10.0%	0	2	4.0%	58.0%	26	25.2%	68.9%	7	0	11.7%	36.7%
	fine sand	0.125	4	8.0%	52.0%	0	5	10.0%	20.0%	4	0	8.0%	66.0%	11	10.7%	79.6%	7	10	28.3%	65.0%
Sand	medium sand	0.25	0	0.0%	52.0%	0	0	0.0%	20.0%	7	0	14.0%	80.0%	2	1.9%	81.6%	14	0	23.3%	88.3%
	course sand	0.50	15	30.0%	82.0%	0	0	0.0%	20.0%	10	0	20.0%	100.0%	16	15.5%	97.1%	4	0	6.7%	95.0%
	very course sand	1.0	3	6.0%	88.0%	3	0	6.0%	26.0%	0	0	0.0%	100.0%	3	2.9%	100.0%	0	0	0.0%	95.0%
	very fine gravel	2.0	3	6.0%	94.0%	3	0	6.0%	32.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	95.0%
G	fine gravel	4.0	2	4.0%	98.0%	1	0	2.0%	34.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	95.0%
· ·	fine gravel	5.7	0	0.0%	98.0%	2	0	4.0%	38.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	1	0	1.7%	96.7%
1	medium gravel	8.0	0	0.0%	98.0%	2	0	4.0%	42.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	1	0	1.7%	98.3%
a v	medium gravel	11.3	0	0.0%	98.0%	2	0	4.0%	46.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	1	0	1.7%	100.0%
· ·	course gravel	16.0	0	0.0%	98.0%	3	0	6.0%	52.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
e	course gravel	22.6	1	2.0%	100.0%	4	0	8.0%	60.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
1	very course gravel	32	0	0.0%	100.0%	2	0	4.0%	64.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very course gravel	45	0	0.0%	100.0%	3	0	6.0%	70.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small cobble	64	0	0.0%	100.0%	9	0	18.0%	88.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	3	0	6.0%	94.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Copple	large cobble	128	0	0.0%	100.0%	2	0	4.0%	98.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	1	0	2.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		50	100.0%		40	10	100%		40	10	100%		103	100.0%		40	20	100%	

	d16	d35	d50	d84	d95
2004 As-Built	0.00	0.00	0.16	1.00	3.46
2005	0.15	5.35	17.42	72.00	120.25
2006	0.00	0.00	0.00	0.45	0.66
2007	0.00	0.00	0.06	0.30	0.47
2008	silt	0.09	0.14	0.34	10.10
2000					

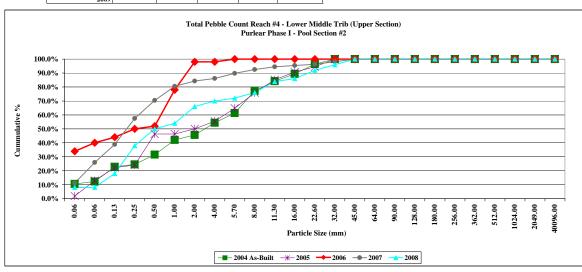


Purlear Phase I 1 - Reach #4- Lower Middle Trib (Upper section)

Project Name Cross Section Feature Date Riffle 10/7/2008 Price

			2004 As-	Built			2005				2006	5			2007			2008		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	7	12.1%	12.1%	0	0	0.0%	0.0%	12	6	36.0%	36.0%	17	17.2%	17.2%	13	7	37.7%	37.7%
	very fine sand	0.062	1	1.7%	13.8%	0	0	0.0%	0.0%	4	3	14.0%	50.0%	20	20.2%	37.4%	4	3	13.2%	50.9%
	fine sand	0.125	0	0.0%	13.8%	7	2	14.8%	14.8%	4	1	10.0%	60.0%	15	15.2%	52.5%	6	0	11.3%	62.3%
Sand	medium sand	0.25	0	0.0%	13.8%	0	8	13.1%	27.9%	5	0	10.0%	70.0%	17	17.2%	69.7%	5	0	9.4%	71.7%
	course sand	0.50	0	0.0%	13.8%	16	0	26.2%	54.1%	3	0	6.0%	76.0%	13	13.1%	82.8%	0	0	0.0%	71.7%
	very course sand	1.0	0	0.0%	13.8%	0	0	0.0%	54.1%	5	0	10.0%	86.0%	7	7.1%	89.9%	0	0	0.0%	71.7%
	very fine gravel	2.0	0	0.0%	13.8%	2	0	3.3%	57.4%	7	0	14.0%	100.0%	1	1.0%	90.9%	0	0	0.0%	71.7%
G	fine gravel	4.0	5	8.6%	22.4%	3	0	4.9%	62.3%	0	0	0.0%	100.0%	0	0.0%	90.9%	0	0	0.0%	71.7%
r	fine gravel	5.7	5	8.6%	31.0%	5	0	8.2%	70.5%	0	0	0.0%	100.0%	0	0.0%	90.9%	1	0	1.9%	73.6%
	medium gravel	8.0	8	13.8%	44.8%	6	0	9.8%	80.3%	0	0	0.0%	100.0%	3	3.0%	93.9%	1	0	1.9%	75.5%
a 	medium gravel	11.3	17	29.3%	74.1%	4	0	6.6%	86.9%	0	0	0.0%	100.0%	2	2.0%	96.0%	1	0	1.9%	77.4%
•	course gravel	16.0	5	8.6%	82.8%	3	0	4.9%	91.8%	0	0	0.0%	100.0%	3	3.0%	99.0%	3	0	5.7%	83.0%
1	course gravel	22.6	4	6.9%	89.7%	2	0	3.3%	95.1%	0	0	0.0%	100.0%	0	0.0%	99.0%	4	0	7.5%	90.6%
1	very course gravel	32	5	8.6%	98.3%	3	0	4.9%	100.0%	0	0	0.0%	100.0%	1	1.0%	100.0%	3	0	5.7%	96.2%
	very course gravel	45	1	1.7%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	1	0	1.9%	98.1%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	98.1%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	1	0	1.9%	100.0%
Copple	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	L / %of whole count	·	58	100.0%		51	10	100%		40	10	100%		99	100.0%		43	10	100%	

	d16	d35	d50	d84	d95
2004 As-Built	3.47	7.66	10.36	20.74	34.24
2005	0.21	0.48	0.69	11.89	27.10
2006	0.00	0.00	0.09	1.35	2.46
2007	0.00	0.06	0.11	0.73	9.73
2008	silt	silt	0.09	20.34	36.07
2009					

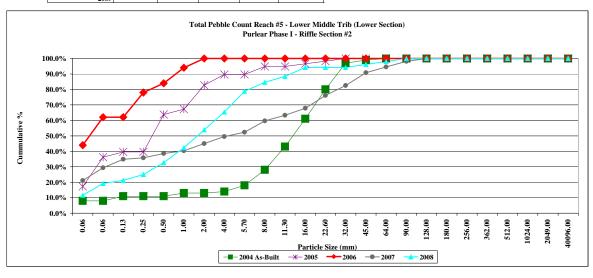


Purlear Phase I 2 -Reach #4 - Lower Middle Trib (Upper Section) Pool 10/7/2008

Project Name Cross Section Feature Date Crew Price

			2004 As-	Built			2005				2006	j			2007			2008		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Pool-Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	6	10.5%	10.5%	0	1	1.9%	1.9%	9	8	34.0%	34.0%	12	11.1%	11.1%	0	4	8.0%	8.0%
	very fine sand	0.062	1	1.8%	12.3%	2	4	11.1%	13.0%	1	2	6.0%	40.0%	16	14.8%	25.9%	0	0	0.0%	8.0%
	fine sand	0.125	6	10.5%	22.8%	5	0	9.3%	22.2%	2	0	4.0%	44.0%	14	13.0%	38.9%	2	3	10.0%	18.0%
Sand	medium sand	0.25	1	1.8%	24.6%	0	1	1.9%	24.1%	3	0	6.0%	50.0%	20	18.5%	57.4%	8	2	20.0%	38.0%
	course sand	0.50	4	7.0%	31.6%	8	4	22.2%	46.3%	1	0	2.0%	52.0%	14	13.0%	70.4%	5	1	12.0%	50.0%
	very course sand	1.0	6	10.5%	42.1%	0	0	0.0%	46.3%	13	0	26.0%	78.0%	11	10.2%	80.6%	2	0	4.0%	54.0%
	very fine gravel	2.0	2	3.5%	45.6%	2	0	3.7%	50.0%	10	0	20.0%	98.0%	4	3.7%	84.3%	6	0	12.0%	66.0%
G	fine gravel	4.0	5	8.8%	54.4%	3	0	5.6%	55.6%	0	0	0.0%	98.0%	2	1.9%	86.1%	2	0	4.0%	70.0%
	fine gravel	5.7	4	7.0%	61.4%	5	0	9.3%	64.8%	1	0	2.0%	100.0%	4	3.7%	89.8%	1	0	2.0%	72.0%
	medium gravel	8.0	9	15.8%	77.2%	6	0	11.1%	75.9%	0	0	0.0%	100.0%	3	2.8%	92.6%	2	0	4.0%	76.0%
a **	medium gravel	11.3	4	7.0%	84.2%	4	1	9.3%	85.2%	0	0	0.0%	100.0%	2	1.9%	94.4%	4	0	8.0%	84.0%
v	course gravel	16.0	3	5.3%	89.5%	3	0	5.6%	90.7%	0	0	0.0%	100.0%	1	0.9%	95.4%	1	0	2.0%	86.0%
	course gravel	22.6	4	7.0%	96.5%	2	0	3.7%	94.4%	0	0	0.0%	100.0%	1	0.9%	96.3%	3	0	6.0%	92.0%
1	very course gravel	32	2	3.5%	100.0%	3	0	5.6%	100.0%	0	0	0.0%	100.0%	2	1.9%	98.1%	2	0	4.0%	96.0%
	very course gravel	45	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	2	1.9%	100.0%	2	0	4.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Copple	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	L / %of whole count		57	100.0%		43	11	100%		40	10	100%		108	100.0%		40	10	100%	

	d16	d35	d50	d84	d95
2004 As-Built	0.13	0.99	3.93	13.53	25.60
2005	0.12	0.56	3.00	13.14	28.42
2006	0.00	0.07	0.38	1.95	2.78
2007	0.06	0.11	0.20	1.92	14.12
2008	0.17	0.35	0.75	13.65	35.70
2009					

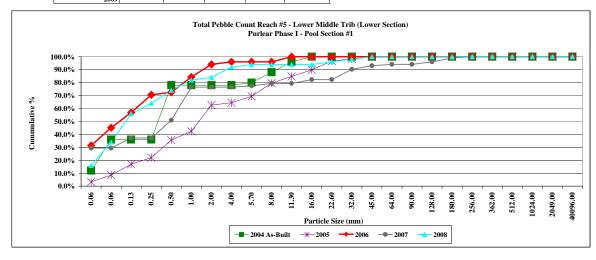


Purlear Phase I 2 - Reach #5 - Lower Middle Trib (Lower Section)

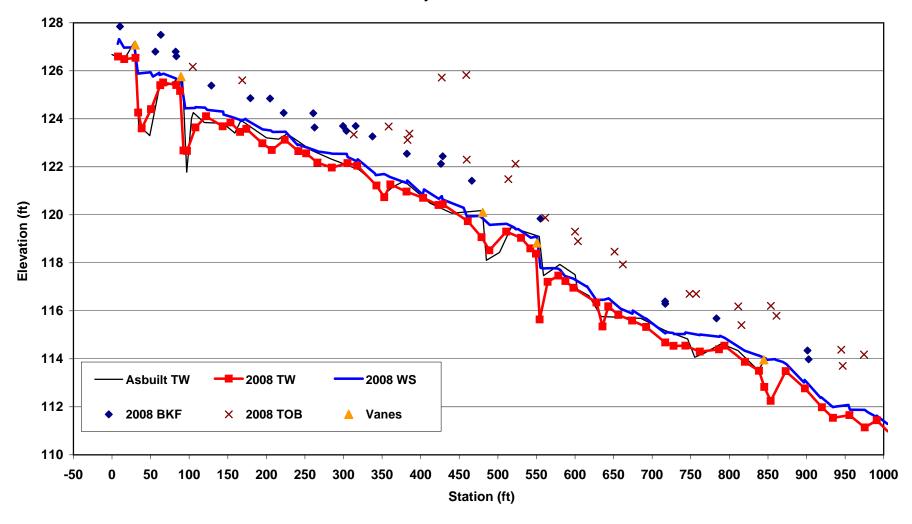
Feature Date Crew Riffle 10/7/2008 Price

			2004 As-	-Built			2005				2006	5			2007			2008		
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %	Riffle - Bed	%	Cum %	Riffle - Bed	Riffle - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	8	8.0%	8.0%	7	3	17.2%	17.2%	16	6	44.0%	44.0%	23	21.1%	21.1%	0	6	11.5%	11.5%
	very fine sand	0.062	0	0.0%	8.0%	4	7	19.0%	36.2%	7	2	18.0%	62.0%	9	8.3%	29.4%	1	3	7.7%	19.2%
	fine sand	0.125	3	3.0%	11.0%	1	1	3.4%	39.7%	0	0	0.0%	62.0%	6	5.5%	34.9%	0	1	1.9%	21.2%
Sand	medium sand	0.25	0	0.0%	11.0%	0	0	0.0%	39.7%	8	0	16.0%	78.0%	1	0.9%	35.8%	2	0	3.8%	25.0%
	course sand	0.50	0	0.0%	11.0%	14	0	24.1%	63.8%	1	2	6.0%	84.0%	3	2.8%	38.5%	4	0	7.7%	32.7%
	very course sand	1.0	2	2.0%	13.0%	2	0	3.4%	67.2%	5	0	10.0%	94.0%	2	1.8%	40.4%	5	0	9.6%	42.3%
	very fine gravel	2.0	0	0.0%	13.0%	9	0	15.5%	82.8%	3	0	6.0%	100.0%	5	4.6%	45.0%	6	0	11.5%	53.8%
G	fine gravel	4.0	1	1.0%	14.0%	4	0	6.9%	89.7%	0	0	0.0%	100.0%	5	4.6%	49.5%	6	0	11.5%	65.4%
, , , , , , , , , , , , , , , , , , ,	fine gravel	5.7	4	4.0%	18.0%	0	0	0.0%	89.7%	0	0	0.0%	100.0%	3	2.8%	52.3%	7	0	13.5%	78.8%
•	medium gravel	8.0	10	10.0%	28.0%	3	0	5.2%	94.8%	0	0	0.0%	100.0%	8	7.3%	59.6%	3	0	5.8%	84.6%
a "	medium gravel	11.3	15	15.0%	43.0%	0	0	0.0%	94.8%	0	0	0.0%	100.0%	4	3.7%	63.3%	2	0	3.8%	88.5%
•	course gravel	16.0	18	18.0%	61.0%	1	0	1.7%	96.6%	0	0	0.0%	100.0%	5	4.6%	67.9%	3	0	5.8%	94.2%
	course gravel	22.6	19	19.0%	80.0%	1	0	1.7%	98.3%	0	0	0.0%	100.0%	9	8.3%	76.1%	0	0	0.0%	94.2%
1	very course gravel	32	17	17.0%	97.0%	1	0	1.7%	100.0%	0	0	0.0%	100.0%	7	6.4%	82.6%	0	0	0.0%	94.2%
	very course gravel	45	2	2.0%	99.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	9	8.3%	90.8%	1	0	1.9%	96.2%
	small cobble	64	1	1.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	4	3.7%	94.5%	1	0	1.9%	98.1%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	4	3.7%	98.2%	1	0	1.9%	100.0%
Copple	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	2	1.8%	100.0%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	L / %of whole count		100	100.0%		47	11	100%		40	10	100%		109	100.0%		42	10	100%	

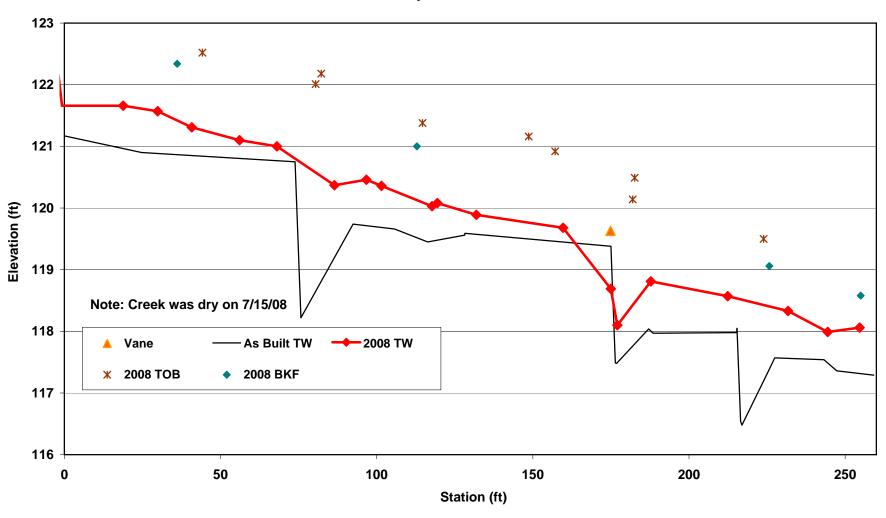
	d16	d35	d50	d84	d95
2004 As-Built	5.85	11.52	15.85	29.94	37.18
2005	0.00	0.09	0.54	3.33	14.22
2006	0.00	0.00	0.07	0.75	1.75
2007	0.00	0.13	4.30	34.22	67.51
2008	0.08	0.93	2.50	9.35	44.90
2009					

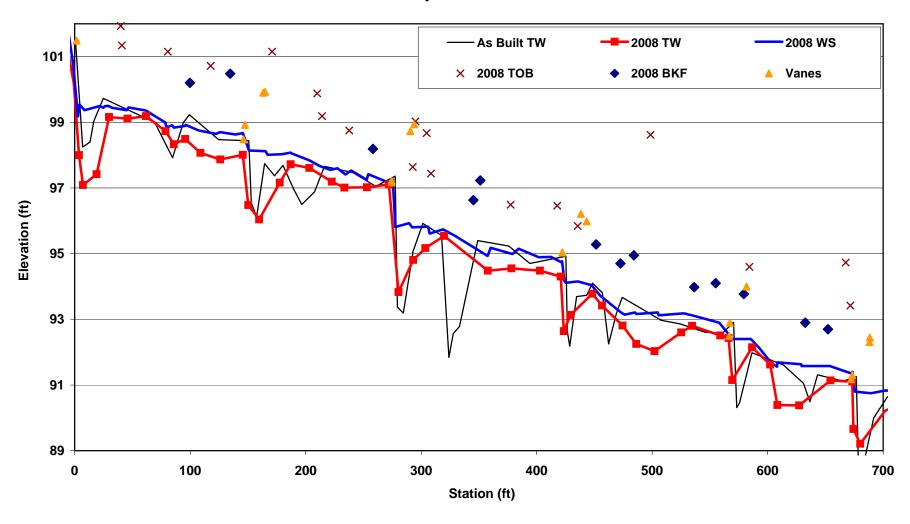

Project Name Cross Section Feature

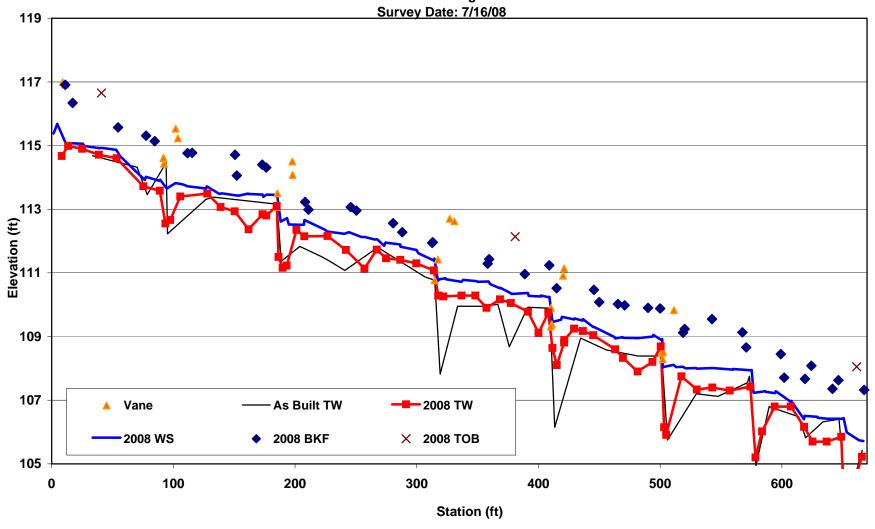
Purlear Phase I 1 - Reach #5 - Lower Middle Trib (Lower Section) Pool 10/7/2008 Price

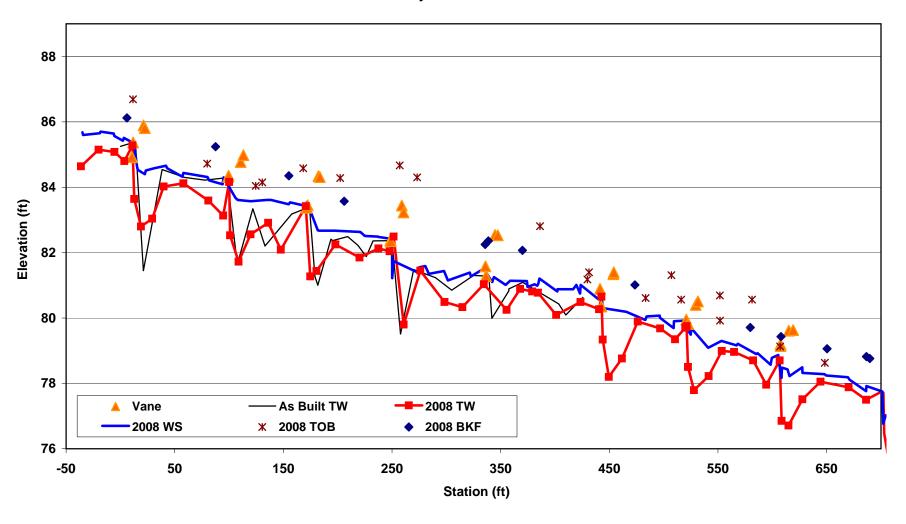

Date Crew

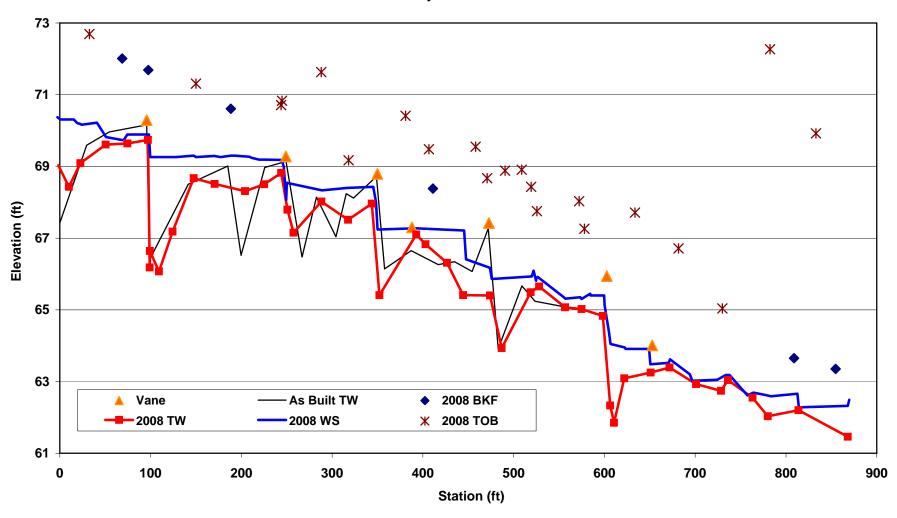
			2004 As-	Built			2005				2006	6			2007			2008		
Description	Material	Size (mm)	Pool - Bed	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %	Pool - Bed	%	Cum %	Pool - Bed	Pool - Bank	%	Cum %
Silt/Clay	silt/clay	0.061	6	12.0%	12.0%	0	2	3.4%	3.4%	11	5	31.4%	31.4%	30	29.4%	29.4%	2	6	16.0%	16.0%
	very fine sand	0.062	12	24.0%	36.0%	0	3	5.1%	8.5%	6	1	13.7%	45.1%	0	0.0%	29.4%	6	3	18.0%	34.0%
	fine sand	0.125	0	0.0%	36.0%	0	5	8.5%	16.9%	5	1	11.8%	56.9%	8	7.8%	37.3%	10	1	22.0%	56.0%
Sand	medium sand	0.25	0	0.0%	36.0%	1	2	5.1%	22.0%	5	2	13.7%	70.6%	0	0.0%	37.3%	4	0	8.0%	64.0%
	course sand	0.50	21	42.0%	78.0%	8	0	13.6%	35.6%	1	0	2.0%	72.5%	14	13.7%	51.0%	5	0	10.0%	74.0%
	very course sand	1.0	0	0.0%	78.0%	4	0	6.8%	42.4%	6	0	11.8%	84.3%	26	25.5%	76.5%	4	0	8.0%	82.0%
	very fine gravel	2.0	0	0.0%	78.0%	12	0	20.3%	62.7%	5	0	9.8%	94.1%	0	0.0%	76.5%	1	0	2.0%	84.0%
G	fine gravel	4.0	0	0.0%	78.0%	1	0	1.7%	64.4%	1	0	2.0%	96.1%	0	0.0%	76.5%	4	0	8.0%	92.0%
	fine gravel	5.7	1	2.0%	80.0%	3	0	5.1%	69.5%	0	0	0.0%	96.1%	1	1.0%	77.5%	1	0	2.0%	94.0%
	medium gravel	8.0	4	8.0%	88.0%	6	0	10.2%	79.7%	0	0	0.0%	96.1%	2	2.0%	79.4%	0	0	0.0%	94.0%
a v	medium gravel	11.3	4	8.0%	96.0%	3	0	5.1%	84.7%	1	1	3.9%	100.0%	0	0.0%	79.4%	0	0	0.0%	94.0%
· ·	course gravel	16.0	2	4.0%	100.0%	3	0	5.1%	89.8%	0	0	0.0%	100.0%	3	2.9%	82.4%	0	0	0.0%	94.0%
1	course gravel	22.6	0	0.0%	100.0%	4	0	6.8%	96.6%	0	0	0.0%	100.0%	0	0.0%	82.4%	1	0	2.0%	96.0%
1	very course gravel	32	0	0.0%	100.0%	1	0	1.7%	98.3%	0	0	0.0%	100.0%	8	7.8%	90.2%	1	0	2.0%	98.0%
	very course gravel	45	0	0.0%	100.0%	1	0	1.7%	100.0%	0	0	0.0%	100.0%	3	2.9%	93.1%	1	0	2.0%	100.0%
	small cobble	64	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	1	1.0%	94.1%	0	0	0.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	94.1%	0	0	0.0%	100.0%
Coppie	large cobble	128	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	2	2.0%	96.1%	0	0	0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	3	2.9%	99.0%	0	0	0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	1	1.0%	100.0%	0	0	0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0	0.0%	100.0%	0	0.0%	100.0%	0	0	0.0%	100.0%
TOTAL	/ %of whole count		50	100.0%		47	12	100%		41	10	100%		102	100.0%		40	10	100%	


	d16	d35	d50	d84	d95
2004 As-Built	0.07	0.09	0.50	8.25	13.15
2005	0.18	0.73	2.06	13.06	25.40
2006	0.00	0.07	0.13	1.48	3.83
2007	0.00	0.11	0.48	19.28	92.80
2008	0.06	0.10	0.16	3.00	23.30
2009					


Purlear Creek Reach 1 MY-04 Monitoring - 2008 Survey Date: 07/14/08


Purlear Creek Reach 2 MY-04 Monitoring - 2008 Survey Date: 7/15/08


Purlear Creek Reach 3 MY-04 Monitoring - 2008 Survey Date: 7/15/08



Purlear Creek Reach 5 MY-04 Monitoring - 2008 Survey Date: 7/14/08

Purlear Creek Reach 6 MY-04 Monitoring - 2008 Survey Date:7/15/08

 Project Name
 Purlear Creek

 Task
 Feature Slope and Length Calculations

 Date
 7/25/08

 Crew
 Z Price, C George

Area 3 - 2008 Riffle Station Change Station Station Change Station Change Station Change Station Change Station Change Station Station Change Station Change Station Station Change Station Change Station Station Station Change Station Station Station Station Change Station Change Station Station Change Station Station Station Change Station Station Station Change Station Station Station Change Station Station Station Change Station Stat	1 0.19 4 0.23	-	Area 6 - 2008 Riffle Station 392 405	Change	Water Elev 67.73	change	slope
Station Change Elev change slope Station Change Station Change slope Llev change slope -18 85.7 83.65 16.99 125.63 0.25 1.47% 1.47% 98.91 0.46 1.35% 39 14 114.92 0.14 1.00% 3 21 85.7 174.06 123.95 123.95 123.95 123.95 57 84.44 194.81 20.75 123.57 0.38 1.83% 1.83% 221 34 97.55 0.51 1.49% 77 24 113.92 0.95 3.96% <td< th=""><th>1 0.19 4 0.23</th><th></th><th>Station 392</th><th>Change</th><th>Elev</th><th>change</th><th>slope</th></td<>	1 0.19 4 0.23		Station 392	Change	Elev	change	slope
66.66 125.88 44.84 99.37 25 115.06 -18 85.7 83.65 16.99 125.63 0.25 1.47% 78.81 33.97 98.91 0.46 1.35% 39 14 114.92 0.14 1.00% 3 21 85.51 174.06 123.95 187 98.06 53 114.87 57 84.44 194.81 20.75 123.57 0.38 1.83% 221 34 97.55 0.51 1.49% 77 24 113.92 0.95 3.96% 81 24 84.21	0.19 1 0.23		392				
174.06 123.95 187 98.06 53 114.87 57 84.44 194.81 20.75 123.57 0.38 1.83% 221 34 97.55 0.51 1.49% 77 24 113.92 0.95 3.96% 81 24 84.21	1 0.23	0.90%	405		07.73		•
194.81 20.75 123.57 0.38 1.83% 221 34 97.55 0.51 1.49% 77 24 113.92 0.95 3.96% 81 24 84.21	0.23		403	13	67.52	0.21	1.62%
			526.57		65.92		
223.58 123.46 N/A 319 95.74 128 113.72 220 82.6:	3	0.96%		30.17	65.31	0.61	2.02%
			650.53		63.52		
251.55 27.97 122.81 0.65 2.32% 358 38.67 94.93 0.81 2.09% 138 10 113.48 0.24 2.40% 253 33 81.74		2.70%	694.07	43.54	63.02	0.5	1.15%
316.71 122.24 Channel Dry during survey 448 94.04 208 112.66 274 81.55	5		737.8		63.18		
341.61 24.9 121.65 0.59 2.37% 476 28.71 93.14 0.900 3.13% 227 19 112.3 0.36 1.89% 301 27 81.15		1.48%	764.18	26.38	62.69	0.49	1.86%
360.72 121.57 531.88 93.14 274 111.95 423 80.75							
402.71 41.99 120.84 0.73 1.74% 566.76 34.88 92.53 0.610 1.75% 310 36 111.45 0.5 1.39% 440 17 80.57		1.06%					
427.38 120.78 585.46 92.4 360 110.73 463 80.15 459.78 32.4 119.93 0.85 2.62% 603.27 17.81 91.66 0.740 4.15% 391 31 110.37 0.36 1.16% 493 30 80.01		0.60%					
577.8 117.76 553.82 91.58 437 109.55 551 79.3		0.00%					
627.39 49.59 116.46 1.3 2.62% 673 19.18 91.35 0.230 1.20% 463 26 108.98 0.57 2.19% 587 36 78.57		2.03%					
643.61 116.52 658 78.24		2.0570					
674.53 30.92 115.88 0.64 2.07% 687 29 77.92		1.10%					
793.84 114.87							
819.74 25.9 114.34 0.53 2.05%							
873.98 113.78							
919.15 45.17 112.4 1.38 3.06%							
991.15 111.63							
1004.77 13.62 111.29 0.34 2.50%							
511.38 119.63 542.73 31.35 119.05 0.58 1.85% 0 207.47 171 217				113.09			
342.73 31.33 11.905 0.58 1.85% 0 201.47 171 217 361.55 0 7 8 8 8				113.09			
12				*			
Pool Station length p-p spacing Pool Station length p-p spacing Pool Station length p-p spacing Pool Station length p-p spacing Pool Station length p-p spacing	ng		Pool Station	length	p-p spaci	ng	
Pool Station length p-p spacing 7 86 -40			20		r r »r····		
35 32 25 105 19 -13 27			96	76			
82 47 96 145 23			107				
95 N/A 146 50 101.5 184 39 69 58 35 67			247	140	119		
121 26 49.5 149 189 79			263				
148 Channel Dry during survey 185 36 46 208 19 34 98 19 48			343	80	126		
170 22 51 224 256 115			350	00	120		
194 268 44 79 272 16 65.5 130 15 34			392	42	68		
223 29 49.5 280 319 154			411				
266 309 29 48.5 358 39 74.5 167 13 38			473	62	71		
306 40 77.5 420 383 181			488				
346 448 28 139.5 404 21 55 207 26 33.5			522	34	63		
359 13 66.5 486 411 253			570				
460 525 39 71.5 430 19 27 273 20 69			604	34	82		
481 21 118 612 467 298			624	25	50		
487 648 36 124.5 500 33 90 335 37 53.5 510 23 28 675 510 350			650 700	26	50		
563 563 705 30 60 574 64 58.5 365 15 41			728	28	77		
578 15 72 576 398			780	20	• • •		
625 594 18 43 426 28 54.5			825	45	88.5		
642 17 63 618 443							
748 630 12 82 476 33 47.5							
792 44 136.5 520							
830 553 33 77							
866 36 78 584							
949 611 27 61							
972 23 112.5							
356 0 317 299 632 15 27 356 343				567			
. 550 U 311 299 345 13 0 9 111 14				10			
9 11 14				10			
min max median min max median min max median min max median min max median min max	median	an		min	max	median	
	36.0 28.0		Riffle Lengtl		43.5	28.3	
	2.70% 1.08%		Riffle Slop				
Pool Length 13.0 47.0 23.0 Pool Length N/A N/A N/A Pool Length 25.0 50.0 36.0 Pool Length 12.0 64.0 19.0 Pool Length 13.0 3	43.0 26.5		Pool Lengtl	th 26.0		42.0	
Pool Spacing 28 137 69 Pool Spacing N/A N/A Pool Spacing 46 140 75 Pool Spacing 27 90 62 Pool Spacing 27	77 48	48	Pool Spacing	ıg 50	126	74	

Project Name Purlear Phase 1

Task Channel Pattern Measurements

Date

Crew Z. Price, C George

Area 1		·
	2007	
Radius of	Meander	Channel
Curvature	Wavelength	Beltwidth
41	117	202
55	171	38
58		37
59		53
41	117	37
41 59	117 171	37 202

min	
max	
modian	

Area 2 2007							
Radius of Curvature	Meander Wavelength	Channel Beltwidth					
64	255	69					
62	245	69					
68	236	70					
56							
56	236	69					
56 68	236 255	69 70					

Area 3		
	2007	
Radius of Curvature	Meander Wavelength	Channel Beltwidth
	Straight Channel o Pattern Measemer	
N		its
	Necessary	
	1	
0	0	0
0	0	0
-	-	-

min
max
median

·	Area 4	
	2007	
Radius of	Meander	Channel
Curvature	Wavelength	Beltwidth
77	138	28
34	132	32
39	120	47
37	153	50
	157	55
	132	
34	120	28
77	157	55
38	135	47

Area 5			Ĩ
	2007		
Radius of Curvature	Meander Wavelength	Channel Beltwidth	
41	113	40	1
40	134	42	
49	134	48	
43	174	50	1
87	187	49	
45	145	36	
52	149		
66			1
40	113	36	min
87	187	50	max
47	145	45	media

Radius of Curvature	Meander Wavelength	Channel Beltwidth
80	238	78
90	198	68
63	188	93
65	216	66
69	194	
64		
43		
43	188	66
90	238	93
65	198	73

2007

Area 6